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Abstract. In this essay we discuss the origin, central results, and some
perspectives of algorithmic synthesis of nonterminating reactive pro-
grams. We recall the fundamental questions raised more than 50 years
ago in “Church’s Synthesis Problem” that led to the foundation of the
algorithmic theory of infinite games. We outline the methodology devel-
oped in more recent years for solving such games and address related
automata theoretic problems that are still unresolved.

1 Prologue

The objective of “synthesis” is to pass from a specification to a program realizing
it. This is a central task in computer science, and – unfortunately or fortunately,
depending on the point of view – its solution cannot in general be automatized.
However, there are classes of specifications for which algorithmic synthesis is
possible. In the present paper we deal with a fundamental class of this kind,
the regular specifications for nonterminating reactive programs. In another ter-
minology, this amounts to the solution of infinite two-person games where the
winning condition is given by a regular ω-language. The central problem on these
games (Church’s Problem [4, 5]) and the first solutions (Büchi and Landweber
[3], Rabin [22]) date back decades by now. Starting from this pioneering work,
the algorithmic theory of infinite games grew into a very active area of research,
and a fascinating landscape of models and algorithmic solutions is developing,
covering, for example, timed games, weighted games, games over infinite state
spaces, distributed games, stochastic games, concurrent games, and multiplayer
games. Rather than trying an overview of these areas we return in this paper to
the fundamentals. In an informal style addressing a general audience1, we dis-
cuss three issues. First, we recall the problem, its connection with infinite games,
and explain some of its historical context in mathematics (more precisely, set
theory). Then the main techniques for solving infinite games are outlined. Fi-
nally, we discuss some questions around the concept of uniformization that are
directly connected with the original problem and seem worth further study.

1 We assume, however, that the reader knows the basic concepts about automata and
logics over infinite words, like Büchi automata and monadic second-order logic over
the structure (N, +1); see [13] as a reference.



2 Church’s Problem

An instance of the synthesis problem is the description of a desired relation
R(X,Y ) between inputs X (say, from a domain D) and outputs Y (say, from
a domain D′). From the description of R we want to construct a program P,
computing a function fP : D → D′ such that

∀X ∈ D R(X, fP(X))

At the “Summer Institute of Symbolic Logic” at Cornell in 1957, Alonzo Church
posed the following problem in [4] (see also [5]):

Given a requirement which a circuit is to satisfy, we may suppose the
requirement expressed in some suitable logistic system which is an exten-
sion of restricted recursive arithmetic. The synthesis problem is then to
find recursion equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no such circuit).

Church considers the case that the input X is an infinite sequence X0X1 . . .

of data (of a finite domain, we consider just bits in this paper) from which in an
on-line mode the output sequence Y = Y0Y1 . . . (again consisting of bits) has to
be generated. The desired program is here a “circuit” (which amounts to a finite
automaton); it has to produce the output bit Yi from the input bits X0 . . . Xi.

The relation R(X,Y ) between inputs and outputs can be identified with an
ω-language LR. We associate with each pair (X,Y ) = (X0X1X2 . . . , Y0Y1Y2 . . .)
of sequences the ω-word

X∧Y := X0Y0X1Y1X2Y2 . . .

and let LR = {X∧Y |R(X,Y )}. A relation R is called regular if the associated
ω-language LR is regular, i.e. definable by a Büchi automaton or by a monadic
second-order formula (MSO-formula) ϕ(X,Y ) over the structure (N,+1). As
solutions we use finite automata with output, more precisely Mealy automata.
Over a finite state-space S and with input alphabet Σ1 and output alphabet Σ2,
a Mealy automaton is equipped with a transition function σ : S×Σ1 → S and an
output function τ : S×Σ1 → Σ2; in our case we set Σ1 = Σ2 = {0, 1}. Given such
an automaton A, the definition of the computed function fA : {0, 1}ω → {0, 1}ω

is obvious.
Let us state Church’s Problem in precise words for this case of MSO-definable

relations and programs in the format of Mealy automata. (Other cases will be
addressed later in this paper.)

Church’s Problem: Given an MSO-formula ϕ(X,Y ), defining the relation
Rϕ ⊆ {0, 1}ω × {0, 1}ω, decide whether there is a Mealy automaton A
such that ∀XRϕ(X, fA(X)) holds and – if yes – construct such a Mealy
automaton from ϕ.



A dozen years later, Büchi and Landweber [3] solved this problem; Rabin
[22] provided independently an alternative solution. The result established an
ideal scenario within computer science: For the MSO-definable specifications, we
can algorithmically check realizability, and we can in this case algorithmically
construct a program (more precisely, an automaton) realizing the specification.
In the context of construction of reactive systems, we view the Mealy automaton
provided by a solution as a finite-state controller that behaves correctly for any
behaviour of the environment as represented by input sequences. Since many
interesting specifications are in fact regular, this result has great potential for
practical applications. (One has to admit, however, that in order to realize this
potential more work is necessary regarding the computational complexity of the
algorithms involved.) Before we sketch the main ideas that enter the solution
of Church’s Problem, we introduce a simple connection of the problem with the
theory of infinite games and underlying motivations from set theory.

3 Infinite Games, Determinacy, and Set Theory

A treatment of Church’s Problem in the framework of infinite games was first
proposed by McNaughton in an unpublished technical report [17], based on work
of Gale and Stewart [12]. With each ω-language L ⊆ {0, 1}ω one associates an
infinite game G(L). (If L is regular, we say that the game G(L) is regular.) It
is played between two players. Due to the symmetry between them, we prefer
to name them Player 1 and Player 2 rather than “Input” and “Output”. The
players choose bits in alternation (where Player 1 starts), forming a sequence
̺ = X0Y0X1Y1X2Y2 . . . which is called “play” in this context. Player 2 wins the
play ̺ if ̺ ∈ L, otherwise Player 1 wins ̺. A strategy for Player 2 is a function f :
{0, 1}+ → {0, 1}, mapping a finite sequence X0X1 . . . Xi to the next chosen bit
Yi. A strategy f induces canonically a function fω : {0, 1}ω → {0, 1}ω mapping
a sequence X0X1 . . . to a sequence Y0Y1 . . . If for each sequence X0X1 . . . the
play X0Y0X1Y1 . . . resulting from applying f belongs to L, f is called winning
strategy for Player 2. So winning strategies capture the type of function that are
asked for in Church’s Problem (disregarding however the aspect of finite-state
computability). Analogously, one introduces strategies and winning strategies g

for Player 1. Now we have g : Y0 . . . Yi−1 7→ Xi, so g : {0, 1}∗ → {0, 1}. We
say that g is a winning strategy g for Player 1 if for each Y0Y1 . . . the sequence
X0Y0X1Y1 . . . obtained by applying g does not belong to L.

By this formulation one introduces some symmetry into the model, which is
not present in the formulation as given by Church. In the mathematical theory
of infinite games this symmetry is a dominating aspect. The main question in
the theory is the following problem: Given L, can we show that either Player
1 or Player 2 has a winning strategy? In this case one calls the game G(L)
determined. Determinacy is the dichotomy

∃ strategy f ∀X X∧fω(X) ∈ L ∨ ∃ strategy g ∀Y gω(Y )∧Y 6∈ L

Determinacy may at first seem a superfluous aspect in the study of Church’s
Problem. It looks useless to know that a specification – say modeling the re-



lation between a program and its environment – can either be realized by the
program or that the complement of it can be realized by the environment. How-
ever, there are several good reasons to address determinacy. In this section we
discuss a first such motivation from set theory (and the reader not interested in
historical connections can skip this discussion). Later we treat also other uses of
determinacy.

Given an ω-language L, we consider a slightly modified game G∗(L), since
in this case the connection to set theory comes in very naturally. Here Player 1
picks finite sequences of bits (rather than single bits) when it is his turn, whereas
Player 2 stays with picking single bits. We write G∗∗(L) if both players pick finite
sequences of bits in each move (this is the so-called Banach-Mazur game).

Let us focus on G∗(L). Intuition tells us that for a “very large” set L it will
be much easier to guarantee a winning strategy for Player 2 than for a “very
small” set L. Now the question of comparing sizes of infinite sets is at the heart of
Cantor’s set theory. In fact, Cantor conjectured in his “Continuum Hypothesis”
CH a dichotomy: that each set L ⊆ {0, 1}ω is either “very small” (and he meant
“being at most countable” by this) or “very large” (meaning that its cardinality
is the same as that of the full space {0, 1}ω). Often, CH is formulated as the
claim that between the cardinalities |N| and |R| there are no further cardinalities;
since |{0, 1}ω| = |R|, this claim is equivalent to the one formulated above.

Cantor could not show this dichotomy – and today we know that CH is
indeed independent of the standard set theoretical assumptions as formulated
in the axiom system ZFC. However, the so-called Cantor-Bendixson Theorem
shows that CH is true at least for all “closed” sets L. A set L ⊆ {0, 1}ω is closed
if one can infer X ∈ L from the condition that infinitely many finite prefixes w

of X have an extension wZ in L. One calls L open if its complement L is closed.

We now state the Cantor-Bendixson Theorem and see that it amounts to
a game-theoretic dichotomy, namely that for an open set L the game G∗(L)
is determined. The statement of the theorem refers to a geometric view of the
space {0, 1}ω, in the sense that we consider {0, 1}ω as the set of all infinite paths
through the binary tree T2 (where 0 means “branch left” and 1 means “branch
right”).

Fig. 1. A tree copy



A pattern of paths as indicated in Figure 1 below we call tree copy; it is given
by infinitely many branching points (bullets in the figure), such that from each
of the two sons (circles in the figure) of a branching point, a finite path to a
next branching point exists. We say that a set L ⊆ {0, 1}ω allows a tree copy if
there is a tree copy such that each path passing through infinitely many of its
branching points belongs to L. Obviously a set L that allows a tree copy must
have the same cardinality as {0, 1}ω. Using this simplifying terminology (instead
of the official one involving “perfect sets”), the Cantor-Bendixson Theorem says:
Each closed set L is either at most countable or allows a tree copy.

Let us infer that for open K, the game G∗(K) is determined. By the Cantor-
Bendixson Theorem we know that L := K is either countable or allows a tree
copy. In the first case, Player 2 can apply a diagonalization method: He uses
an enumeration Z0, Z1, . . . of L and chooses his i-th bit in a way to make the
resulting play different from Zi. Then the play will be outside L and hence in K,
so this is a winning strategy for Player 2 in G∗(K). In the second case, Player
1 refers to the tree copy of L and chooses his bit sequences in a way to remain
inside this tree copy (he always moves “to the next branching point”). Then the
play will be in L and hence outside K, so this is a winning strategy for Player 1
in G∗(K).

For the games G(L), determinacy is not so easily connected with cardinalities
of sets. Nevertheless, topological notions (such as “open” and “closed”) are the
key for showing determinacy results. The fundamental result, due to Martin,
rests on the notion of Borel set: An ω-language is Borel if it can be built from
open and closed sets in an at most countable (possibly transfinite) sequence
of steps, where each single step consists of a countable union or a countable
intersection of already constructed sets. Martin’s Theorem now says that for a
Borel set L, the game G(L) is determined (see e.g. [16]). As will be explained
later, all regular games are Borel and hence determined.

For the Banach-Mazur games G∗∗(L), nice connections can again be drawn
to concepts of richness of sets (like “co-meager”); a recent in-depth analysis of
the determinacy problem is Grädel’s work [11].

4 Solving Infinite Games

In this section we give a very brief sketch of the techniques that enter (known)
solutions of Church’s Problem, using game-theoretic terminology. For a detailed
development see e.g. the tutorial [25].

4.1 From Logic to Games on Graphs

The start is a conversion of the originally logical problem into an automata
theoretic one, by a transformation of the given MSO-formula ϕ into an equiv-
alent ω-automaton. Here we apply the well-known results due to Büchi [2] and
McNaughton [18] that allow to convert an MSO-formula into an equivalent (non-
deterministic) Büchi automaton, and then a Büchi automaton into an equivalent



(deterministic) Muller automaton. 2 A Büchi automaton has a designated set F

of final states; and a run is accepting if some state of F occurs infinitely often in
it. The run of a Muller automaton with finite state set Q is accepting if the set
of states visited infinitely often in it belongs to a predefined collection F ⊆ 2Q

of state sets.
We can easily build this automaton in a way that the processing of letters Xi

contributed by Player 1 is separated from the processing of letters Yi contributed
by Player 2, in the sense that the state set Q is partitioned into two sets Q1 (from
where bits of Player 1 are read) and Q2 (from where bits of Player 2 are read).
Thus a run of the automaton switches back and forth between visits to Q1- and
to Q2-states. Since the acceptance of a play by the automaton refers only to the
visited states, we may drop the input- and output-letters for our further analysis
and identify a play with a state sequence through the automaton. The resulting
structure is also called game arena or game graph: We imagine that the two
Players 1 and 2 build up a path in alternation – Player 1 picks a transition from
a state in Q1, similarly Player 2 from a state in Q2. The winning condition (for
Player 2) is now no more a logic formula but a very simple requirement, namely
that the states visited infinitely often in a play form a set in the predefined
collection F . Referring to this “Muller winning condition”, we speak of a Muller
game over a finite graph.

For solving Church’s Problem, it is now sufficient to decide whether for plays
beginning in the start state of the graph, Player 2 has a winning strategy, and
in this case to construct such a strategy in the form of a Mealy automaton. Due
to the deletion of the transition labels, the Mealy automaton now maps a finite
play prefix from Q∗ to a “next state” from Q. For a vertex v the play ̺ starting
from v is won by Player 2 iff

for some F ∈ F : ∃ωi ̺(i) ∈ F ∧ ¬∃ωi ̺(i) 6∈ F

(here ∃ω is the quantifier “there exist infinitely many”). From this form of the
winning condition it is easy to see that the set Lv of plays won by Player 2 from
v is Borel, and in fact a Boolean combination of countable intersections of open
sets. Hence the Muller game over G with start vertex v is determined.

We add some methodological remarks.

1. The main effect of this transformation is the radical simplification of the
winning condition from a possibly complex logical formula to the requirement
that a play visits certain states infinitely often and others only finitely often.
This simplification is made possible by distinguishing finitely many different
“game positions” in the form of the automaton states. As mentioned, we can
infer that a game as presented in Church’s Problem is determined. The cost
to be payed for this simplicity is the high number of states; it is known that
in the length of (MSO-) formulas this number grows at a rate that cannot
be bounded by an elementary function.

2 It should be noted that in the early days of automata theory, the conversion of
regular expressions or logical formulas into automata was called “synthesis” and the
converse “analysis” (see e.g. the introction of [1]).



2. It should be noted that all known solutions of Church’s Problem involve
this reduction from logic to automata (or graphs). In model-checking, similar
remarks apply when the linear-time logic LTL is considered; on the other
hand, CTL-model-checking proceeds directly by an induction on formulas,
which is one reason for its efficiency. It would be interesting to know logics of
substantial expressive power that allow a similar approach for the solution
of games.

3. The introduction of game graphs has another advantage: In modelling reac-
tive systems, it is usually convenient to describe the interaction between a
controller and its environment by a game graph, adding a specification in the
form of a winning condition (then as an ω-language over the respective state
set Q). In practice this winning condition may not be a Muller condition but
again an MSO-formula or LTL-formula ϕ, defining an ω-language L ⊂ Qω.
In this case one can also apply the above-mentioned transformation of ϕ into
a Muller automaton (call its state set S), obtaining a game graph over the
vertex set S × Q, now together with a Muller condition (this condition just
refers to the S-components of visited states).

4.2 Parity Games

The direct solution of Muller games (as presented in the difficult original paper
[3]) is rather involved. It is helpful to pass to a different kind of game first, called
parity game, and then solve this parity game. As for the Muller winning condi-
tion, also the parity winning condition is a Boolean combination of statements
that certain states are visited infinitely often. But instead of a collection F of
state sets, a uniform coloring of vertices by a finite list of colors is used. We
take here natural numbers as colors. A play ̺ is won by Player 2 iff the highest
color visited infinitely often during ̺ is even. This amounts to the disjunction
over the following statements for all even i ≤ k: Color i is visited infinitely often
but each color j > i only finitely often. This winning condition was proposed
first by Mostowski [19], and it has a precursor in the “difference hierarchy” in
Hausdorff’s Grundzüge der Mengenlehre [14], introduced there to structure the
levels of the Borel hierarchy (see also [24]).

Technically, one reduces Muller games to parity games in the following sense:
For a game graph G and a collection F , defining a Muller winning condition,
one constructs a new graph G′ with an appropriate coloring c such that each
play ̺ in G induces a corresponding play ̺′ in G′ with the following property:
Player 2 wins ̺ under the Muller condition w.r.t. F iff Player 2 wins ̺′ under the
parity condition w.r.t. c. In the standard construction of G′, using the “latest
appearance record”, one introduces memory about the visited vertices of G in the
order of their last visits. Thus a vertex of G′ is basically a permutation of vertices
in G (the leading entry being the current vertex of G); so the transformation
G 7→ G′ involves a serious blow-up. However, the solution of parity games is much
easier than that of Muller games. In particular, memoryless winning strategies
suffice for the respective winner; i.e. strategies that do not involve memory on
the past of a play but just depend on the respective currently visited vertex.



As a preparation for the solution of parity games, one considers a very simple
winning condition, called reachability condition. We are given a set F of “target
vertices”, and Player 2 wins the play ̺ if a vertex from F occurs in ̺. To solve
a reachability game means to compute those vertices v from which Player 2 has
a strategy to force a visit in F .

This problem has a straightforward solution: Over the (finite) vertex set Q,
one computes, for i = 0, 1, 2, . . ., the set A2

i (F ) of those states from which Player
2 can guarantee a visit in F within i steps. Obviously A2

0(F ) = F , and we have
v ∈ A2

i+1(F ) iff one of the two following cases holds:

– v ∈ Q2 and one edge connects v with a vertex in A2
i (F ),

– v ∈ Q1 and each edge from v leads to a vertex in A2
i (F ).

We have A2
0(F ) ⊆ A2

1(F ) ⊆ A2
2(F ) . . . and set A2(F ) =

⋃
i A2

i (F ); this set is
obtained at some stage i0. Clearly from each vertex in A2(F ), Player 2 has a
winning strategy by taking edges which decrease the distance to F with each
step (and it is also easy to see that a memoryless strategy suffices). To show that
the construction is complete, we verify that from each vertex outside A2(F ) the
other player (1) has a winning strategy. Thus we show that reachability games are
determined. This use of determinacy is a general method: To show completeness
of a game solution one verifies a determinacy claim.

How is this done for a reachability game? From the construction of the A2
i (F )

it is clear that for each v in the complement of A2(F ) one of the following cases
holds:

– v ∈ Q2 \A2(F ) and hence no edge leads from v to some A2
i (F ); so each edge

leads from v to a vertex again outside A2(F ),
– v ∈ Q1 \ A2(F ) and hence not each edge leads from v to some A2

i (F ); so
some edge leads from v to a vertex outside A2(F ).

Clearly this yields a strategy for Player 1 to avoid visiting A2(F ) from outside
A2(F ), and hence to avoid visiting F ; so we have a winning strategy for Player
1.

The set A2(F ) as constructed above for the set F is often called the “attractor
of F (for Player 2)”. As it turns out, an intelligent iteration of this construction
basically suffices also for the solution of parity games. The determinacy claim
even holds without the assumption that the game graph is finite: In a parity
game over the game graph G, for each vertex v one of the two players has a
memoryless winning strategy for the plays starting from v. If G is finite, one can
decide who wins and compute a memoryless winning strategy ([7]).

The idea to show this is by induction on the number of used colors, and the
rough course of the induction step is as follows: Let Q be the set of vertices and
W1 be the set of vertices from which Player 1 has a memoryless winning strategy.
We have to show that from each vertex in Q \ W1, Player 2 has a memoryless
winning strategy. Consider the set Ck of vertices having the maximal color k.
We assume that k is even (otherwise one has to switch the players). The case
Ck ⊆ W1 gives us a game graph Q \W1 without color k; applying the induction



hypothesis to this set we easily get the claim. Otherwise consider Ck \ W1 and
define its attractor A for Player 2, restricted to Q \ W1. (For the case of an
infinite game graph, the inductive definition of A2(F ) mentioned above has to
be adapted, involving a transfinite induction.) Now the vertex set Q \ (W1 ∪A)
defines a game graph without color k, so by induction hypothesis there exists
a division into two sets U1, U2 from where Player 1, respectively Player 2 has
a memoryless winning strategy. It turns out that U1 must be empty and that
on A ∪ U2, which is the complement of W1, Player 2 has a memoryless winning
strategy.

Over finite game graphs, also the effectiveness claims can be shown; it is open
whether the decision who wins a parity game from a given vertex v is possible
in polynomial time.

5 Model-Checking and Tree Automata Theory

We have mentioned two motivations for the question of determinacy, a historical
one in set theory, and a technical one regarding the completeness of winning
strategies. In this section we address a third type of motivation, originating in
logic. In this case determinacy reflects the duality between “true” and “false”.
We indicate very briefly two kinds of application. Details can be found, e.g., in
[13].

5.1 Model-Checking

Model-Checking is the task of evaluating a formula ϕ in a structure S. It is well-
known that the evaluation can be explained in terms of a finite game between
the players Proponent (aiming at showing truth of the formula) and Opponent
(aiming at the converse). The duality between the connectives ∨,∧ and between
the quantifiers ∃,∀ is reflected in the rules: For example, when treating ϕ1 ∨ ϕ2

then Proponent picks one of ϕ1, ϕ2 for which the evaluation continues, and when
a formula ϕ1∧ϕ2 is treated, then Opponent picks one of ϕ1, ϕ2. Proponent wins
a play if it ends at an atomic formula which is true in S. Then S satisfies ϕ

iff in this finite “model-checking game” Proponent has a winning strategy (and
falsehood means that Opponent has a winning strategy).

The modal µ-calculus is a logic involving least and greatest fixed points rather
than quantifiers; the formulas are interpreted in transition graphs in the form
of Kripke structures. Even for finite Kripke structures, the appropriate model-
checking game turns out to be infinite, since the semantics depends on infinite
paths when fixed point operators enter. As first shown in [8], the model-checking
game for the µ-calculus is in fact a parity game; the game graph is a product
of the considered structure S and the collection SF(ϕ) of subformulas of the
given formula ϕ. Thus the open problem about polynomial time solvability of
the µ-calculus model-checking poblem reduces to the (again open) problem of
polynomial time solvability of parity games.

An extension of the µ-calculus model-checking game to a “quantitative µ-
calculus” was developed in [9].



5.2 Tree Automata

A very strong decidability result of logic is Rabin’s Tree Theorem, saying that
the MSO-theory of the infinite binary tree is decidable [21]. Rabin’s method for
showing this was a transformation of MSO-formulas (interpreted over the binary
tree T2) into finite tree automata working over labelled infinite trees (where
each node of T2 gets a label from a finite alphabet Σ). These tree automata are
nondeterministic, and a run is a labelling of the input tree nodes with automaton
states such that a natural compatibility with the input tree and the automaton’s
transition relation holds. As acceptance condition for a given run one can require
that on each path of the run, a parity condition is satisfied. In this case we speak
of a parity tree automaton.

The main problem of this approach is to show complementation for parity tree
automata. For this the determinacy of parity games (in the version over infinite
game graphs) can be used. In fact, the acceptance of a labelled tree t by a parity
tree automaton A can be captured in terms of a parity game GA,t between
two players called “Automaton” and “Pathfinder”. The infinite game graph is
a kind of product of t and A. Then A accepts t iff Automaton has a winning
strategy in GA,t. The complementation proof (following [10]) starts with the
negation of the statement “A accepts t”, i.e. in game-theoretical terms with the
statement “Automaton does not have a (memoryless) winning strategy in GA,t”.
By memoryless determinacy of parity games, this means that Pathfinder has a
memoryless winning strategy in GA,t. From this winning strategy it is possible
to build (in fact, independently of the given tree t) a new tree automaton B as
the complement automaton for A.

There are further results that belong to the very tight connection between
infinite games and automata on infinite trees. In particular, the solution of parity
games over finite graphs is reducible to the emptiness problem for parity tree
automata and conversely.

Let us comment on the application of tree automata for the solution of games.
This use of tree automata appears in Rabin’s approach to Church’s Problem
(developed in [22]). The idea is to code a strategy of Player 2 by a labelling of
the nodes of the infinite binary tree: The root has no label, the directions left and
right represent the bits chosen by Player 1, and the labels on the nodes different
from the root are the bits chosen by Player 2 according to the considered strategy.
When Player 1 chooses the bits b0, . . . , bk, he defines a path to a certain node; the
label b of this node is then the next choice of Player 2. Now the paths through
a labelled tree t capture all plays that are compatible with Player 2’s strategy
coded by t. Using analogous constructions to those explained in Section 3 above,
one can build a parity tree automaton A that checks whether t codes a winning
strategy. Deciding non-emptiness of A thus allows to decide whether Player 2
wins the given game. By Rabin’s “Basis Theorem” we even know that in this
case some regular tree is accepted by A. This regular tree can then be interpreted
as a finite-state winning strategy for Player 2.



6 On Uniformization

A class R of binary relations R ⊆ D×D′ is uniformizable by functions in a class
F if for each R ∈ R there is a function f ∈ F such that

– the graph of f is contained in R,
– the domains of R and f coincide.

D′

D

R

f

Fig. 2. Uniformization

Two well-known examples from recursion theory and from automata theory
are concerned with the recursively enumerable, respectively the rational rela-
tions; here we have the “ideal” case that the graphs of the required functions
are precisely of the type of the given relations.

Recall that a partial function from N to N is recursive iff its graph is recur-
sively enumerable. The Uniformization Theorem of recursion theory says that a
binary recursively enumerable relation R is uniformizable by a function whose
graph is again recursively enumerable, i.e. by a (partial) recursive function f . A
computation of f(x) works as follows: Enumerate R until a pair (y, z) is reached
with x = y, and in this case produce z as output.

A binary rational relation is defined (for instance) by a finite nondeterminis-
tic two-tape automaton that scans a given word pair (u, v) asynchronously, i.e.
with two reading heads that move independently from left to right over u, re-
spectively v. Rational relations are uniformizable by rational functions, defined
as the functions whose graph is a rational relation (see e.g. [6]).

Church’s Problem is a variant of the uniformization problem. It asks for
the decision whether an MSO-definable relation is uniformizable by a Mealy
automaton computable function. In the context of determinacy, the problem is
extended to the question whether for an MSO-definable relation R ⊆ {0, 1}ω ×
{0, 1}ω, either R itself or the complement of its inverse is uniformizable by a
Mealy computable function.

There are numerous variants of this problem, either in the unilateral version
(as in Church’s Problem) or in the determinacy version. For both parameters,



the class R of relations and the class F of uniformizing functions, there are
several other interesting options.3

Let us first mention some natural classes of functions. A Mealy automaton
computable function f : {0, 1}ω → {0, 1}ω is continuous (in Cantor’s topology):
Each bit of f(X) only depends on a finite prefix of X. If the i-th bit of f(X)
only depends on X0, . . . ,Xi then we call f causal. One can show that a function
is Mealy automaton computable iff it is causal and its graph is MSO-definable.
The proof rests on the equivalence between MSO-logic and finite automata over
finite words (the Büchi-Elgot-Trakhtenbrot-Theorem). Note that there are MSO-
definable functions that are not causal and not even continuous (a trivial example
is the function that maps a bit-sequence with infinitely many 1’s to 1ω and all
other sequences to 0ω).

A more restricted concept of MSO-definability refers to the fact that a strat-
egy f : {0, 1}+ → {0, 1} can be captured by the language

Lf := {X0 . . . Xi ∈ {0, 1}+ | f(X0 . . . Xi) = 1}

of finite words. We say that a strategy is MSO-definable if Lf is. For MSO-logic
this is compatible with the definition given above: A strategy f is MSO-definable
iff the graph of the associated causal function fω is MSO-definable.

A slightly more extended class of functions (over the causal ones) is given
by the condition that the i-th bit of f(X) only depends on the bits X0, . . . ,Xj

where i < j and j − i ≤ k for some constant k; we then say that f is of delay
k. In game-theoretic terms, this means that Player 2 can lag behind Player 1
by k moves. The dual type of function g is called “shift k” (where the i-th bit
of g(Y ) depends on Y0, . . . , Yj with j < i and i − j < k). It is not difficult to
show a determinacy result for MSO-definable relations by finite-state computable
functions of delay k, respectively shift k. Hosch and Landweber [15] proved the
interesting result that it is decidable whether for an MSO-definable relation the
associated game is won by Player 2 with a strategy of bounded delay (by some
k), and they also showed that in this case a finite-state winning strategy can be
constructed.

Not much is known about more general strategies. One natural option is to
consider strategies that induce functions f : {0, 1}ω → {0, 1}ω with linearly in-
creasing delay, respectively linearly increasing shift. A function of the first type is
the “division by 2” of sequences, mapping X0X1X2X3X4 . . . to X0X2X4 . . .; an
example of the second type is the “double function” X0X1 . . . 7→ X0X0X1X1 . . ..
Note that gsm-mappings (functions computable by generalized sequential ma-
chines) are finite-state computable functions of linearly increasing shift. These
functions seem interesting for uniformization or determinacy problems on more
general relations than the MSO-definable ones.

Regarding Church’s Problem for other classes of relations, let us first consider
relations that are first-order definable rather than MSO-definable. There are
two natural versions of first-order logic, denoted FO(+1) and FO(<), where in

3 In the monograph [26] of Trakhtenbrot and Barzdin one finds an early account of
these matters.



brackets we exhibit the available arithmetical signature. (A technical point to be
mentioned is that we cannot pass from a relation R to the associated ω-language
LR as explained in Section 2, since the even and the odd positions of an ω-
sequence cannot be distinguished in FO(+1) and FO(<). So we consider a pair
(X,Y ) of bit sequences as an ω-word (X0, Y0), (X1, Y1), . . . over the alphabet
{0, 1} × {0, 1}.) In [23], it was shown that a determinacy theorem holds for
the FO(+1)-, respectively the FO(<)-definable relations, and that appropriate
winning strategies exist which are again FO(+1)-, respectively FO(<)-definable.

There are also interesting logics for which the analogous result fails. We give
an example for the unilateral case as addressed in Church’s Problem. Consider
Presburger arithmetic, the first-order theory of addition over N. We present a
formula ϕ(X,Y ) of Presburger arithmetic such that in the game associated with
Rϕ there is a winning strategy for Player 2, however not a Presburger definable
one. First we write down in Presburger arithmetic a formula ϕsqu(X) which says
that X is the set Squ of squares (use the fact that the distances of successive
squares increase by 2). Now one invokes the fact that multiplication is FO-
definable in (N,+,Squ) ([20]). Hence also each arithmetical set is FO-definable
in (N,+,Squ); pick such a set M which is not recursive, and let ϕM (y) its FO-
definition in (N,+,Squ). Write ϕM (X, y) for the formula where the predicate
symbol for Squ is replaced by X. Now consider the following Presburger formula
over (N,+):

ϕ(X,Y ) := (ϕsqu(X) → ∀y(Y (y) ↔ ϕM (X, y)))

Clearly there is a winning strategy for Player 2 in the game defined by ϕ, e.g.
with Y = M for arbitrary X. As the case X = Squ shows, the strategy f cannot
be recursive. Thus the language Lf coding f is not recursive, so it cannot be
Presburger definable.

It seems to this author that a comprehensive theory of effective determinacy
and uniformization over infinite words is only in its beginnings. Although this
question is raised from a theoretical point of view, results obtained in this re-
search are likely to be interesting also in the context of the synthesis of controllers
or reactive programs.
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