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Abstract. Motivated by problems in infinite-state verification, we study
word rewriting systems that extend mixed prefix/suffix rewriting (short:
bifix rewriting). We introduce several types of infix rewriting where infix
replacements are subject to the condition that they have to occur next to
tag symbols within a given word. Bifix rewriting is covered by the case
where tags occur only as end markers. We show results on the reach-
ability relation (or: derivation relation) of such systems depending on
the possibility of removing or adding tags. Where possible we strengthen
decidability of the derivation relation to the condition that regularity
of sets is preserved, resp. that the derivation relation is even rational.
Finally, we compare our model to ground tree rewriting systems and
exhibit some differences.

1 Introduction

The algorithmic theory of prefix (respectively suffix) rewriting systems on finite
words has long been well established, and a number of decision problems over
such systems have been proven to be decidable. Such rewriting systems are a
general view of pushdown systems, where symbols are pushed onto and removed
from the top of a stack.

Büchi showed in [2] that the language derivable from a given word by prefix
rewriting is regular (and that a corresponding automaton can be computed).
In the theory of infinite-state system verification, the “saturation method” (for
the transformation of finite automata) has been applied for this purpose (see
e. g. [14, 5, 6]). Caucal [4] showed the stronger result that the derivation relation
induced by a prefix rewriting system is a rational relation.

The extension to combined prefix and suffix rewriting goes back to Büchi and
Hosken [3]. Karhumäki, Kunc, and Okhotin showed in [9] that when combining
prefix and suffix rewriting, the corresponding derivation relation is still rational,
and therefore preserves regularity of languages. They extended their work in [8]
to rewriting systems with a center marker, simulating two stacks communicating
with each other. They singled out a number of cases where universal computation
power could already be achieved with very limited communication.

In a more restricted framework, Bouajjani, Müller-Olm and Touili studied
dynamic networks of pushdown systems in [1]. Here, a collection of pushdown
processes is treated as a word in which a special marker is used to separate
the processes. Rewriting of such words is restricted to performing pushdown



operations and to creating new processes, where the latter increases the number
of markers. It was shown that reachability in this setting is decidable.

In the present paper, we develop a generalised framework of “tagged infix
rewriting” which extends some of the cases mentioned above. We clarify the sta-
tus of the word-to-word reachability relation (or derivation relation) for several
types of tagged infix rewriting. More precisely, we determine whether this rela-
tion is undecidable, or decidable, or even decidable in two stronger senses: that
the relation preserves effectively the regularity of a language, or that the deriva-
tion relation itself is rational. (By “effective” preservation of regular languages we
mean that from a presentation of L by a finite automaton and from the rewriting
system defining the relation R we obtain algorithmically a finite automaton for
the image of L under the derivation relation of R.) So the motivation (and con-
tribution) of the paper is twofold: first to push the frontier of decidability further
for reachability problems over rewriting systems, and secondly to differentiate
clearly between the three levels of decidability proofs mentioned above.

We define a generalisation of mixed prefix/suffix rewriting systems on words
by introducing special symbols (tags or markers) to mark positions in words
where rewriting can occur. Typically, a rewriting rule can transform a word
w = w0#1w1 · · ·#nwn into a word w′ = w′

0#1w
′
1 · · ·#nw′

n with wi = w′
i for

all i except for some i0 where w′
i0

is obtained from wi0 by a prefix, suffix, or
complete rewriting rule U −֒→ V with regular sets U, V (to be applied to the
whole word u ∈ U between two successive markers, replacing it by some v ∈
V ). Thus, arbitrary words in finite sequences can be rewritten independently,
extending a case studied in [9]. The variants we consider in this paper deal with
the options that markers may be removed or added in the rewriting process. We
show that the derivation relation is rational in the basic case mentioned above,
where markers are always preserved, and that this fails in general for the other
cases. However, we still obtain decidability of the reachability problem in all
cases. For applications, our systems are close to models of concurrent processes
where states are presented by words between tags, state transitions by local
rewriting rules, and e. g. spawning of new processes by the insertion of tags.

The paper is structured as follows: In the subsequent section we summarise
technical preliminaries. Section 3 introduces the basic models of bifix systems and
its extension tagged infix rewriting, and we show that one obtains different levels
of decidability of the derivation relation: We present cases where the derivation
relation is not rational but effectively preserves regularity of languages, and
where the latter condition fails but the word-to-word reachability problem is
still decidable. This refined analysis also exhibits a substantial difference between
the two cases of tag insertion and tag removal. The next section is devoted to a
comparison of bifix systems and ground tree rewriting systems (and the closely
related multi-stack systems).



2 Terminology

Automata and Languages. We use the standard terminology from automata
theory and formal language theory (see e. g. [7]). We present nondeterministic
finite automata (NFA) in the format A = (Q,Σ, q0,∆, F ), where Q is a finite set
of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, and ∆ ⊆ Q×(Σ∪{ε})×Q is a finite set of transitions. We write A : p

w
−→q

to denote that there is a w-labelled path from state p to state q in A. Reg(Σ)
denotes the class of all regular languages over Σ. We will refer to normalised
NFAs which have exactly one final state, and in which no incoming respectively
outgoing transitions are allowed for the initial respectively final state. A (finite)
transducer is an NFA A = (Q,Γ, q0,∆, F ), where Γ ⊆ Σ∗ ×Σ∗ is a finite set of
pairs of words over a finite alphabet Σ.

Relations. Let Σ be a finite alphabet. A relation R ⊆ Σ∗×Σ∗ is recognisable if it
is a finite union of products of regular languages over Σ, that is, R =

⋃n
i=1 Li×Mi

for some n ∈ IN and regular Li,Mi; when using R as a rewriting system, we write
rules in the form Li −֒→ Mi. R is rational if it is recognisable by a transducer,
i. e. an NFA with transitions labelled by finite subsets of Σ∗×Σ∗. We then write
R ∈ Rat(Σ∗ × Σ∗).

For relations R,S ⊆ Σ∗ × Σ∗, we call Dom(R) = {u | ∃v : (u, v) ∈ R} the
domain of R, and Im(R) = {v | ∃u : (u, v) ∈ R} the image of R. For L ⊆ Σ∗, we
call R(L) = {v | ∃u ∈ L : (u, v) ∈ R} the set derivable from L according to R. We
define the concatenation of R and S as R·S = {(ux, vy) | (u, v) ∈ R∧(x, y) ∈ S},
which we also shorten to RS, if no ambiguity arises, and their composition as
R ◦ S = {(u,w) | ∃v : (u, v) ∈ R ∧ (v, w) ∈ S}.

We call I = {(w,w) | w ∈ Σ∗} the identity relation on Σ∗. Note that I is
rational, but not recognisable. When considering iteration, we have to distinguish
two cases. Let R∗ =

⋃
n≥0 Rn, where R0 = {(ε, ε)}, and Rn+1 = Rn · R, and let

R� =
⋃

n≥0 R(n), where R(0) = I, and R(n+1) = R(n) ◦ R.

We recall some basic results about rational relations: Rat(Σ∗×Σ∗) is closed
under union, concatenation and the concatenation iteration ∗. Furthermore, if
R is a rational relation, then R(L) is regular for regular L, hence Dom(R) and
Im(R) are regular. Finally, if R is a rational relation, and S is a recognisable
relation, then R ∩ S is rational.

Mixed Prefix / Suffix Rewriting Systems. A mixed prefix/suffix rewriting system
is a tuple R = (Σ,R, S), where Σ is a finite alphabet, and R,S ⊆ Reg(Σ) ×
Reg(Σ) are recognisable relations of rewriting rules. We write w −→

R
w′ if

(w,w′) ∈ (RI∪IS), i. e. R and S are used for prefix respectively suffix rewriting.
We denote the derivation relation −→

R

�= (RI ∪ IS)� by R�.

Proposition 1 ([9]). The derivation relation R� of a mixed prefix/suffix re-
writing system R is rational.



3 Bifix Rewriting Systems and Extensions

As a first and minor extension of mixed prefix/suffix rewriting systems, we in-
troduce bifix rewriting systems, which will serve as a basis for further extensions.
A bifix rewriting system is a tuple R = (Σ,R, S, T ), with Σ,R, S as in the case
of mixed prefix/suffix rewriting systems, and where T ⊆ Reg(Σ) × Reg(Σ) is
also a recognisable relation. We write w −→

R
w′ if (w,w′) ∈ (RI ∪ IS ∪ T ), that

is, R and S are used as before, and T is used to rewrite complete words. The
other notions carry over.

As a first result, it is easy to see that Proposition 1 holds again:

Proposition 2. The derivation relation of a bifix rewriting system is rational.

Proof. We have to show that W = (RI∪IS∪T )� is rational. For this, introduce
# 6∈ Σ, and consider U = #R ∪ #T# and V = S#. Then #W# = (UI ∪
IV )�∩(#Σ∗#×#Σ∗#), that is, we use rewriting of complete words with T for
prefix rewriting, and we restrict the corresponding derivation relation to pairs of
words with # at the beginning and end only. Since U , V , and (#Σ∗#×#Σ∗#)
are recognisable, (UI ∪ IV )� is rational by Proposition 1, and it follows that
{(#u#,#v#) | (u, v) ∈ W} is rational. Removing the symbols # preserves this
rationality, so W is rational.

3.1 Tagged Infix Rewriting Systems

Let Σ be a finite alphabet. We will use a finite set M of tags (or markers) with
M ∩ Σ = ∅ to mark positions in a finite word where rewriting can occur. Given
Σ and M , let PΣ,M := MΣ∗ ∪ Σ∗M ∪ MΣ∗M denote the set of all words over
Σ ∪ M that contain at least one marker from M , but only at the beginning
and/or end.

A tagged infix rewriting system (TIRS) is a structure R = (Σ,M,R) with
disjoint finite alphabets Σ and M and a relation R ⊆ PΣ,M × PΣ,M which is a
finite union of

prefix rules of the form #U −֒→ #V (denoting #U × #V ),
suffix rules of the form U$ −֒→ V $ , and
bifix rules of the form #U$ −֒→ #V $ ,

(1)

where U, V ∈ Reg(Σ) and #, $ ∈ M . Note that when using R to rewrite a
word w over Σ ∪ M , all tags in w are preserved, and none are added. We write
xuy −→

R
xvy if (u, v) ∈ R and x, y ∈ (Σ ∪ M)∗, and we denote −→

R

� by R�.

As a first example, consider R = ({a, b, c}, {#}, R) with the following set R

of rules: ## −֒→ #acb# (bifix rule),
#a −֒→ #aa #a+cb −֒→ #b (prefix rules),
b# −֒→ bb# acb+# −֒→ a# (suffix rules).

Then R�({##}) = #a+cb+# ∪ #a∗# ∪ #b∗#.
As a second example, note that the infinite grid can be generated with the

simple TIRS ({a, b}, {#}, {# −֒→ a#,# −֒→ #b}), starting with marker #:



# → #b → #bb → · · ·
↓ ↓ ↓

a# → a#b → a#bb → · · ·
↓ ↓ ↓

aa#→ aa#b→ aa#bb→ · · ·
↓ ↓ ↓

Since the monadic second-order logic (MSO) of the infinite grid is undecidable
(see e. g. [15]), we can immediately conclude the following.

Proposition 3. The MSO theory of graphs generated by TIRSs is undecidable.

It is well known that prefix (resp. suffix) and mixed prefix/suffix rewriting
systems preserve regularity ([4, 9]), that is, given such a system R and a regular
set L, the set derivable from L according to R is again regular. It has also been
shown that the derivation relation R� of such systems is rational. We show in
the following that these results carry over to tagged infix rewriting systems.

Theorem 4. The derivation relations of TIRSs are rational.

Proof. Let R = (Σ,M,R) be a TIRS. We construct an NFA AR = (Q,Γ, q0,∆,

{qf}) whose edges are labelled with rational relations (i. e. Γ is a finite set of
rational relations), such that L(AR) = R�. Since we know that every finite
concatenation of rational relations is again rational, every path in AR from q0

to qf is labelled with a rational relation.
It is important to note that markers are preserved in the derivation process.

Thus, the derivation relation is a concatenation of derivation relations of rewrit-
ing that occurs before the first marker (see (i) below), after the last marker (ii),
or between two markers (iii), which are basically mixed prefix/suffix rewriting
derivations.

We can therefore construct A as follows: For #, $ ∈ M , let R# = {(u, v) |
(u#, v#) ∈ R}, #R = {(u, v) | (#u,#v) ∈ R}, and #R$ = {(u, v) | (#u$,#v$)
∈ R}. We choose Q = {q0, qf} ∪ {sm, tm | m ∈ M}, that is, we take one source
state sm and one target state tm for every marker m, and we set ∆ to be the
following set of edges labelled with relations:

∆ = {(sm, {m} × {m}, tm) | m ∈ M} ∪ {(q0, I, qf )}

∪ {(q0, (IRm)�, sm) | m ∈ M} (i)

∪ {(tm, (mRI)�, qf ) | m ∈ M} (ii)

∪ {(tm, (mRI ∪ IRm′ ∪ mRm′)�, sm′) | m,m′ ∈ M} . (iii)

We know that {m}× {m}, (IRm)�, (mRI)�, and I are rational, and by Propo-
sition 2 the same holds for (mRI ∪ IRm′ ∪ mRm′)�. ⊓⊔

We can immediately deduce that TIRSs effectively preserve regularity.



3.2 Extending TIRSs by Removing Tags

We consider an extension of TIRSs where removing tags is allowed, thereby
breaking up the preservation of markers. We will see that in this case some
effective reachability analysis is still possible.

A TIRS with tag-removing rules is a structure R = (Σ,M,R) with disjoint
finite alphabets Σ and M as before and a relation R ⊆ PΣ,M × (PΣ,M ∪ Σ∗)
containing rules of the basic form (1) and also rules of the forms #U −֒→ V ,
U$ −֒→ V , #U$ −֒→ #V , #U$ −֒→ V $, and #U$ −֒→ V , where U, V ∈ Reg(Σ)
and #, $ ∈ M . We show that in this case the derivation relation is not rational
in general, but that regularity is still preserved (the latter result involving a
nontrivial saturation construction).

Proposition 5. Derivation relations of TIRSs with tag-removing rules are not
rational in general.

Proof. Consider R = ({a, b}, {#}, R), where R contains only the rules #a −֒→ b

and b# −֒→ a. Then Dom(R� ∩ (#∗a#∗ × {a})) = {#na#n | n ≥ 0} is not
regular, and so R� is not rational. ⊓⊔

Before showing that such systems still preserve regularity, we need to intro-
duce some more terminology. We call an NFA A = (Q,Σ∪M, q0,∆, F ) unravelled
if it satisfies the following conditions:

1. for every q ∈ Q: |{(q,m, p) ∈ ∆ | m ∈ M}| · |{(p,m, q) ∈ ∆ | m ∈ M}| = 0;
that is, every state is the source or the target state of transitions labelled
with markers (or none of the above), but not both at the same time;

2. for every m ∈ M and (q,m, q′) ∈ ∆: |{(q, a, r) ∈ ∆ | a ∈ Σ ∪ M ∪ {ε}}| = 1
and |{(r, a, q′) ∈ ∆ | a ∈ Σ ∪ M ∪ {ε}}| = 1; that is, every source state of a
marker transition has no other outgoing transitions, and every target state
of a marker transition has no other incoming transitions.

Lemma 6. For every NFA A over an alphabet Σ ∪ M one can effectively con-
struct an unravelled NFA A′ with L(A) = L(A′).

Proof. Let A = (Q,Σ ∪ M, q0,∆, F ) be an NFA. Construct A′ = (Q′, Σ ∪
M, q′0,∆

′, F ′) with

– Q′ := {q′0} ∪ {(p, a, q), (p, a, q) | (p, a, q) ∈ ∆},
– F ′ := {(p, a, q) | (p, a, q) ∈ ∆, q ∈ F} ∪ {q′0 | q0 ∈ F}, and
– ∆′ := {(q′0, ε, (q0, a, q)) | (q0, a, q) ∈ ∆}

∪ {((p, a, q), a, (p, a, q)) | (p, a, q) ∈ ∆}
∪ {((p, a, q), ε, (q, b, r)) | (p, a, q), (q, b, r) ∈ ∆} .

Then L(A′) = L(A), and A′ is unravelled.
A state (p, a, q) in A′ symbolizes that p is the current state and (p, a, q) the

next transition to be taken in a run of A; (p, a, q) denotes that q is the current
state and (p, a, q) is the last transition used in a run of A. After every such step,
a transition of the form ((p, a, q), ε, (q, b, r)) allows us to guess the next transition
taken in a run of A (in this case (q, b, r)). We omit the details of the correctness
proof due to space restrictions. ⊓⊔



The notion of unravelled NFA is important for the following theorem.

Theorem 7. TIRSs with tag-removing rules effectively preserve regularity.

Proof. Let R = (Σ,M,R) be a TIRS with tag-removing rules, and let A =
(Q,Σ ∪ M, q0,∆, F ) be an unravelled NFA with L(A) = L. We provide an
algorithm that constructs an NFA A′ from A such that L(A′) = R�(L). For
this, we first extend an initial automaton A0 = (Q0, Σ ∪ M, q0,∆0, F ) with
Q0 := Q and ∆0 := ∆ as follows.

We have to capture derivation at and between all possible combinations of
markers, possibly involving the deletion of markers. If, for instance, there is a
rule #U −֒→ #V in R, then it may be applied at different positions of the marker
# in A, and we thus have to distinguish between these applications to avoid side
effects. Therefore, we add normalised NFAs for all (p,m, q), (p′,m′, q′) ∈ ∆ with
m,m′ ∈ M , taking disjoint copies for different applications of rules inside the
given automaton:

– for every prefix rule of the form mU −֒→ mV or mU −֒→ V in R, we add
A(p,q,V ) = (Q(p,q,V ), Σ, s(p,q,V ),∆(p,q,V ), {t(p,q,V )}) with L(A(p,q,V )) = V ;
we set Q0 := Q0∪Q(p,q,V ) and ∆0 := ∆0∪∆(p,q,V ), and we add (q, ε, s(p,q,V ))
(resp. (p, ε, s(p,q,V ))) to ∆0;

– for every suffix rule of the form Um′ −֒→ V m′ or Um′ −֒→ V in R, we add
A[p′,q′,V ] = (Q[p′,q′,V ], Σ, s[p′,q′,V ],∆[p′,q′,V ], {t[p′,q′,V ]}) with L(A[p′,q′,V ]) =
V ; we set Q0 := Q0 ∪ Q[p′,q′,V ] and ∆0 := ∆0 ∪ ∆[p′,q′,V ], and we add
(t[p′,q′,V ], ε, p

′) (resp. (t[p′,q′,V ], ε, q
′)) to ∆0;

– for every bifix rule of the form mUm′ −֒→ mV m′, mUm′ −֒→ mV , mUm′ −֒→
V m′, or mUm′ −֒→ V in R, we add A(p,q,p′,q′,V ) = (Q(p,q,p′,q′,V ), Σ, s(p,q,p′,q′,V ),

∆(p,q,p′,q′,V ), {t(p,q,p′,q′,V )}) with L(A(p,q,p′,q′,V )) = V ; we set Q0 := Q0 ∪
Q(p,q,p′,q′,V ) and ∆0 := ∆0 ∪ ∆(p,q,p′,q′,V ), and we add (q, ε, s(p,q,p′,q′,V )) in
the first two cases resp. (p, ε, s(p,q,p′,q′,V )) in the last two cases to ∆0.

For the automaton A0 generated this way, we have L(A0) = L(A).

For the sketch of the correctness proof later on, let Qi denote the set of all
initial states of the NFAs added for suffix rules, and let Qf denote the set of all
final states of the NFAs added for prefix and bifix rules.

After these preparatory steps, we now repeat the following saturation steps
until no more transitions can be added, starting with k = 0:

1. If there are (p,m, q) ∈ ∆, r ∈ Q0, a prefix rule of the form mU −֒→ mV or

mU −֒→ V in R, and a path Ak : q
u
−→ r for some u ∈ U , then we add the

transition (t(p,q,V ), ε, r) to ∆k to obtain Ak+1, and we set k := k + 1.

The following illustrates this for rules mU1 −֒→ mV1 and mU2 −֒→ V2 and
a path p

m
−→ q

u
−→ r. The dotted lines denote the transitions added in the

preparatory steps, while the dashed lines show the ε-transitions added in
the saturation steps.



s(p,q,V1) t(p,q,V1)

q rp
m

u ∈ U1

ε
ε s(p,q,V2) t(p,q,V2)

p q r
m

u ∈ U2

ε ε

2. If there are (p′,m′, q′) ∈ ∆, r ∈ Q0, a suffix rule of the form Um′ −֒→ V m′

or Um′ −֒→ V in R, and a path Ak : r
u
−→p′ for some u ∈ U , then we add the

transition (r, ε, s[p′,q′,V ]) to ∆k to obtain Ak+1, and we set k := k + 1.

The following illustrates this for rules U3m
′ −֒→ V3m

′ and U4m
′ −֒→ V4 and a

path r
u
−→p′

m′

−−→q′.

s[p′,q′,V3] t[p′,q′,V3]

r p′ q′
m′

u ∈ U3

ε ε s[p′,q′,V4] t[p′,q′,V4]

r p′ q′
m′

u ∈ U4

ε ε

3. If there are (p,m, q), (p′,m′, q′) ∈ ∆ and a path Ak : q
u
−→p′ for some u ∈ U

for a bifix rule of the form
(a) mUm′ −֒→ mV m′ or mUm′ −֒→ V m′ in R, then we add the transition

(t(p,q,p′,q′,V ), ε, p
′) to ∆k;

(b) mUm′ −֒→ mV or mUm′ −֒→ V in R, then we add the transition
(t(p,q,p′,q′,V ), ε, q

′) to ∆k;
we obtain Ak+1, and we set k := k + 1.

The case of bifix rules of the form mU5m
′ −֒→ mV5m

′, mU6m
′ −֒→ mV6,

mU7m
′ −֒→ V7m

′, and mU8m
′ −֒→ V8 is basically a combination of cases 1.

and 2. above.

s(p,q,p′,q′,V5) t(p,q,p′,q′,V5)

p q p′ q′m m′
u ∈ U5

ε ε

s(p,q,p′,q′,V6) t(p,q,p′,q′,V6)

p q p′ q′m m′
u ∈ U6

ε
ε

s(p,q,p′,q′,V7) t(p,q,p′,q′,V7)

p q p′ q′m m′
u ∈ U7

ε
ε

s(p,q,p′,q′,V8) t(p,q,p′,q′,V8)

p q p′ q′m m′
u ∈ U8

ε ε

After saturating A0 this way, we set A′ := Ak, thereby obtaining the desired
automaton with L(A′) = R�(L). Since only finitely many transitions can be
added in the saturation steps, the algorithm terminates.

For the completeness of the algorithm, we can show by induction on n that
if z −→

R

(n) w for some z ∈ L(A), then there is a path A′ : q0
w
−→ F . For the

soundness, we can show that if there is a path A′ : q0
w
−→F , then w ∈ R�(L(A)).

This follows directly from the more general claim

A′ : p
w
−→q with p ∈ Q ∪ Qi ∧ q ∈ Q ∪ Qf ⇒ ∃w′ : w′ −→

R

� w ∧ A0 : p
w′

−→q .



For p = q0 and q ∈ F this yields the original claim. Note that we are using Q

(states of the original automaton A) in the claim, not Q0. We omit the proof
details due to space restrictions. ⊓⊔

3.3 Extending TIRSs by Adding Tags

We extend our basic model such that R allows rules of the forms #U −֒→ #V ,
U# −֒→ V #, and #U$ −֒→ #V $, where U ⊆ Σ∗ and V ⊆ (Σ ∪ M)∗ are regular
sets. This means that the right hand sides of rules may contain new tags, thereby
allowing tags to be added when rewriting words.

It turns out that regularity is not preserved with this extension, and thus
also the derivation relation is not rational in general. In view of Theorem 7,
this illustrates well that the two cases of removing and of adding tags behave
differently with respect to preservation of regularity.

Proposition 8. TIRSs with tag-adding rules do not preserve regularity.

Proof. Consider R = ({a}, {#}, R), where R contains only the rule #a −֒→
##a#. Then R�({#a#}) = {#na#n | n > 0} is not regular. ⊓⊔

However, we still keep decidability of the word-to-word reachability problem.

Theorem 9. The word-to-word reachability problem for TIRSs with tag-adding
rules is decidable.

Proof. Let R = (Σ,M,R) be a TIRS with tag-adding rules, and let u, v ∈
(Σ ∪ M)∗. Let |w|M denote the number of markers of M in w. If |u|M > |v|M ,
then clearly v is not reachable from u. Otherwise, a maximum of n := |v|M−|u|M
rewriting steps that add tags will suffice to obtain v from u, if at all possible.
Let R0 denote the set of rules of R that do not add tags, and let R1 = R \ R0.
Similarly, let R0 = (Σ,M,R0) and R1 = (Σ,M,R1). Then we have to iterate
the following at most n times to decide whether v is reachable from u, starting
with i = 0 and U0 = {u}:

1. Set i := i + 1, and compute U ′
i :=−−→

R0

� (Ui−1) and Ui :=−−→
R1

(U ′
i);

2. If v ∈ Ui, then v is reachable from u, else if i = n, then v is not reachable
from u.

With the algorithm of Theorem 7, we can compute an NFA recognizing U ′
i in

every step, starting from an unravelled NFA recognizing Ui−1. Then, since −−→
R1

is rational, Ui is also effectively regular. ⊓⊔

3.4 Remarks on Further Extensions

There are several natural ways how the basic model of TIRS may be extended
further. For instance, one may allow tag-removing and tag-adding rules at the
same time, or rules might be allowed to rename the tags that are involved in



a rewriting step. It is not difficult to see that these models allow to transfer
information across tags in either direction, which makes it possible to move
markers arbitrarily and thus to apply rewriting rules at any position within a
word. Therefore, these models are Turing powerful, and all interesting properties
over such systems are undecidable.

Another interesting extension is to allow information transfer across tags
in only one direction, e. g. by allowing rules of the form u# −֒→ #v. In [8],
Karhumäki et al. distinguished the cases of controlled or uncontrolled transfer.
In the controlled case, a connection of the u’s and v’s is allowed, that is, the word
to be removed to the left of the marker # can determine the word to be added
to the right of #. In the uncontrolled case, no such connection is allowed, that
is, the words to be removed and added are chosen independently. Karhumäki et
al. showed that the language derivable from a regular initial set L ⊆ Σ∗#Σ∗

is context-free in the case of uncontrolled transfer. For the controlled case how-
ever, they showed that even finite relations for the transfer suffice to obtain
computational universality.

4 Comparison with Ground Tree Rewriting

Ground tree rewriting systems (GTRSs) have been studied intensively in [11].
They allow to substitute subtrees of finite ranked trees by other finite trees
according to given rules. In this section we give a comparison with bifix rewriting
systems.

Ranked trees are finite ordered trees over some ranked alphabet A which
determines the labels and numbers of successors of nodes in a tree. TA denotes
the set of all finite trees over a given ranked alphabet A. A GTRS is a structure
R = (A,Σ,R, tin), where A is a ranked alphabet, Σ is an alphabet to label

rewriting rules, R is a finite set of rewriting rules of the form s ֒
σ
−→ s′, where

σ ∈ Σ and s, s′ ∈ TA, and tin ∈ TA is the initial tree.
Intuitively, a rule s ֒

σ
−→ s′ may be applied to a tree t ∈ TA if s is a proper

subtree of t. Applying the rule yields a tree that is obtained from t by replacing
one occurrence of the subtree s by s′.

It is easy to realize the infinite IN × IN grid by a GTRS (using a tree of two
unary branches of lengths i, j to represent vertex (i, j)). Hence the MSO theory
of a GTRS graph is in general undecidable. As shown in [12], even the “universal
reachability problem” (“Does every path from v reach a vertex in a regular tree
set T?”) is undecidable. On the other hand, as also shown in [12], the first-order
theory with reachability (short: FO(R) theory) of a GTRS graph is decidable. In
the FO(R) theory, the graph signature is extended by a symbol for the closure
E∗ of the edge relation E.

For bifix rewriting systems, the undecidability result on universal reachability
is easily transferred from GTRSs. The proof for GTRSs only uses trees with two
unary branches (for the representation of the left and right inscriptions of a
Turing tape); in bifix rewriting systems, one simply combines the two branches
into a single word with a separator between the left and right part.



It is remarkable that a converse simulation cannot work. This is clarified by
the following result:

Theorem 10. The FO(R) theory of a mixed prefix/suffix rewriting system is in
general undecidable.

For the proof, we remark that for the bifix rewriting system with rules Σ −֒→ ε

for both prefix and suffix rewriting, the transitive closure gives the infix relation.
As proved by Kuske [10], the first-order theory of Σ∗ with the infix relation is
undecidable.

This result shows that there is an essential difference between

– the “multiple stack” model that is inherent in ground tree rewriting (when
a collection of unary branches is used as a list of stacks, with leaves as the
top symbols of stacks), and

– the bifix rewriting model, where two stacks are easily simulated, but where
an internal information flow between the two sides is possible.

5 Conclusion

We have introduced a general form of “tagged” rewriting system which extends
the mixed prefix/suffix rewriting as studied in [3, 9], and where reachability (or
the derivation relation) is decidable. We studied systematically the effects of
removing and adding tags and showed that these cases are not dual. At the same
time, we exhibited examples which separate decidability proofs by preservation
of regularity, by rationality, or just by recursiveness of the derivation relation.

Many questions arise from these results in infinite-state system verification,
where the universe of words with the tagged infix rewriting relation is considered
as an infinite transition graph. For example, it should be investigated which
logics admit an algorithmic solution of the model-checking problem over tagged
infix rewriting graphs (see e. g. [13]). Another field of study is the definition of
natural extended models where the derivation relation is no more rational, but
still decidable.
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