
Classifying Regular Languages via Cascade
Products of Automata

Marcus Gelderie

RWTH Aachen, Lehrstuhl für Informatik 7, D-52056 Aachen
gelderie@automata.rwth-aachen.de

Abstract. Building on the celebrated Krohn-Rhodes Theorem we char-
acterize classes of regular languages in terms of the cascade decomposi-
tions of minimal DFA of languages in those classes. More precisely we
provide characterizations for the classes of piecewise testable languages
and commutative languages. To this end we use biased resets, which are
resets in the classical sense, that can change their state at most once.
Next, we introduce the concept of the scope of a cascade product of reset
automata in order to capture a notion of locality inside a cascade prod-
uct and show that there exist constant bounds on the scope for certain
classes of languages. Finally we investigate the impact of biased resets
in a product of resets on the dot-depth of languages recognized by this
product. This investigation allows us to refine an upper bound on the
dot-depth of a language, given by Cohen and Brzozowski.

1 Introduction

A significant result in the structure theory of regular languages is the Krohn-
Rhodes Theorem [7], which states that any finite automaton can be decomposed
into simple “prime factors” (a detailed exposition is given in [4, 6, 9, 10]).

We use the Krohn-Rhodes Theorem to characterize classes of regular lan-
guages in terms of the decompositions of the corresponding minimal automata.
In [8] this has been done for star-free languages by giving an alternative proof
for the famous Schützenberger Theorem [11]. In [1] R-trivial languages are char-
acterized (among other things) by proving structural properties of the cascade
products covering their minimal automata. We continue these studies, in an at-
tempt to improve our understanding of the potential of automata decompositions
for classifying regular languages, an approach which is as yet not well developed
in comparison to the structure theory of regular languages based on algebraic
methods (wreath product and block product decomposition of monoids, see [14]).

We treat here the case of piecewise testable and commutative languages, as
well as the star-free languages in their classification by the dot-depth hierarchy.
To this end, we use the concept of a biased reset (called a half reset in [1]) and
introduce locally i-triggered cascade products in order to characterize piecewise
testable languages. For commutative languages we use the notion of one letter
automaton (OLA) and a corresponding one letter cascade product. We show
that a language is commutative iff its minimal automaton is covered by a direct

2 M. Gelderie

product of a one letter cascade product of biased resets and one letter simple
cyclic grouplike automata.

Next we introduce the notion of scope of resets within a cascade product
in order to further refine our analysis of the Krohn-Rhodes decomposition. In-
formally speaking, the scope of a product of resets is the maximal number of
preceding automata, to which any given factor is still sensitive. The scope mea-
sures a notion of locality in the product. As initial results we show that the scope
of cascade products recognizing R-trivial languages is bounded by 2 and that
for piecewise testable languages, it is bounded by 1.

Finally we pick up a result from Cohen and Brzozowski [2], which bounds the
dot-depth of a star-free language by the number of factors of a cascade product of
resets recognizing it. We show that this result can be refined by counting blocks
of biased resets as a single reset. To this end we show that multiplying (w.r.t.
the cascade product) an arbitrary number of biased resets to an automaton A
increases the dot-depth of languages recognized by the product by at most one
(compared to the dot-depth of languages already recognized by A).

The present paper is based on the diploma thesis [5].

2 Preliminaries

A semiautomaton is a tuple A = (Q,Γ, δA), where Q is a finite set of states, Γ is
a finite set of letters, called the input alphabet of A and δA : Γ → QQ is the state
transition function assigning a mapping aA : Q → Q to each letter a ∈ Γ . By
function composition we can extend these mappings to words w = a1 · · · an ∈ Γ ∗
by setting wA(q) = an

A(an−1
A(· · · a1

A(q) · · ·))1. A subsemiautomaton of A is a
structure A0 = (Q0, Γ, δ

A
0), where Q0 ⊆ Q is closed under the mappings δA(a)

for all a ∈ Γ and δA
0 (a) is the restriction of δA(a) to Q0, a ∈ Γ . A homomorphism

from A = (Q,Γ, δA) to B = (P, Γ, δB) is a mapping ϕ : Q→ P with ϕ(aA(q)) =
aB(ϕ(q)) for all q ∈ Q and a ∈ Γ . A covers a semiautomaton B (of the same
input alphabet), written B ≤ A, if B is the image of a subsemiautomaton of A
under some homomorphism ϕ.

A deterministic finite automaton (DFA) is a semiautomaton A = (Q,Γ, δ)
with a designated initial state q0 ∈ Q and a set F ⊆ Q of final states. In
this situation we sometimes write (A, q0, F) or (using the same symbol for the
DFA and the corresponding semiautomaton) A = (Q,Γ, q0, δ, F). If A is a DFA,
then the language accepted by A is denoted by L(A) = {w ∈ Γ ∗|wA(q0) ∈ F}.
A single semiautomaton constitutes the foundation of several DFA. Hence, a
semiautomaton “recognizes” a set of languages: L(A) = {L ⊆ Γ ∗|∃q0 ∈ Q, F ⊆
Q : L = L(A, q0, F)}. If L ∈ L(A) we say L is recognized by A. Given a regular
language L ⊆ Γ ∗ we denote the canonical DFA for L by AL. As noted above,
we often identify a DFA with the underlying semiautomaton. This identification
is used in the following proposition, the proof of which is left to the reader:

1 Note that the empty word induces the identity mapping.

Classifying Regular Languages via Cascade Products of Automata 3

Proposition 1. Given a semiautomaton A and a regular language L, we have
L ∈ L(A) iff AL ≤ A.

In what follows we will often deal with two kinds of semiautomata: re-
sets and permutation automata. A reset automaton2 is a semiautomaton R =
({0, 1}, Γ, δR), where for any input a ∈ Γ the induced mapping aR is either the
identity on B := {0, 1} or has constant value x ∈ B. Conversely, a permutation
automaton is an automaton P = (Q,Γ, δP), such that every input a ∈ Γ induces
a permutation (that is, a bijective function).

Recall that a monoid M divides a monoid N , written M ≺ N , if there exists
a surjective monoid homomorphism ψ : N0 → M from a submonoid N0 of N
onto M . As with coverings of automata, the division relation is transitive and
reflexive. We recall that the transition monoid of an automaton is the set M(A)
of all mappings wA : Q → Q for w ∈ Γ ∗. In the special case where A is a
permutation automaton, the monoid M(A) is a group G. If A has precisely |G|
states we call A a grouplike automaton. Notice that in this case, we may identify
the states from Q with elements from G. G is the group associated with A.
A grouplike automaton G is simple (cyclic) if the associated group is simple
(cyclic). Since the number of states is equal to |G| it makes sense to speak of the
order of G, which we define to be the order of G.

Given two automata A = (Q,Γ, δA) and B = (P, Γ ×Q, δB) we define

δA∗B(a) := aA∗B : Q× P → Q× P

(q, p) 7→ (aA(q), (a, q)
B

(p))

The automaton A ∗ B = (Q×P, Γ, δA∗B) is called the cascade product of A and
B. We recall a few important properties of the cascade product:

Theorem 1 (see [6]). Let A, B and C be semiautomata with input alphabets
of the suitable format. Then the following hold:

(1) (A ∗ B) ∗ C = A ∗ (B ∗ C)
(2) If A ≤ B then C ∗ A ≤ C ∗ B

The following theorem is the basis for our task of characterizing language classes:

Theorem 2 (Krohn, Rhodes, [7]). Let A be a semiautomaton. Then

A ≤ F1 ∗ · · · ∗ Fn

for semiautomata Fi, such that each Fi is either a reset or a simple grouplike
automaton with M(Fi) ≺M(A).

A detailed exposition of the Krohn-Rhodes Theorem is given in [3, 4, 6]. We will
call a decomposition of an automaton A, which is of the form stated in Theorem
2, a Krohn-Rhodes decomposition (of A).
2 Reset automata are often introduced in a more general fashion, allowing for an

arbitrary number of states. However, if a reset automaton has more than 2 states, it
can be covered by a direct product of 2-state reset automata (see, for instance, [6]).

4 M. Gelderie

3 Piecewise Testable Languages

In this section we want to characterize piecewise testable languages in terms of
their cascade products. Recall that a language is piecewise testable iff it is a
Boolean combination of expressions of the form Γ ∗a1Γ

∗ · · ·Γ ∗anΓ ∗ for letters
a1, . . . , an ∈ Γ , n ∈ N0 (if n = 0 we obtain Γ ∗). There are several characteri-
zations for piecewise testable languages (see for instance [1, 9, 10, 12, 15, 13]). It
should be mentioned that the characterization from [13] (stated in terms of ma-
trices over a semiring) is very similar to the one we give below, yet not stated
in terms of semidirect products. This result is again mentioned in [15] in the
context of a discussion of restricted semidirect products. The decomposition ob-
tained thereby is indeed very close the one we give below. As we give a purely
automaton theoretic proof (the proof from [15] is purely algebraic) it would be
interesting to investigate whether one can be obtained from the other.

Definition 1. Let R1 ∗ · · · ∗ Rn be a cascade product of resets.

(a) We say the reset Ri has scope k if for every pair of inputs (a, (x1, . . . , xi−1))
and (a, (y1, . . . , yi−1)) with yj = xj for all i − k ≤ j ≤ i − 1 the induced
mappings are equal, i.e.

(a, (x1, . . . , xi−1))
Ri = (a, (y1, . . . , yi−1))

Ri

(b) The scope of Ri is the minimal number k, such that Ri has scope k. The
scope of the product R1 ∗ · · · ∗ Rn is the maximal scope of a reset Ri.

(c) If b ∈ B, we call the product above strictly locally b-triggered, if it has scope
1 and for every reset Ri every input of the form (a, (x1, . . . , xi−2, 1 − b))
induces the identity mapping. A product is called locally b-triggered, if it is
a direct product of strictly locally b-triggered products.

In other words, the scope of a reset counts the number of resets preceding it in
a cascade, such that it is sensitive to the state of these resets. For example, a
cascade product degenerates to a direct product iff it has scope 0. Strictly locally
b-triggered products add another constraint to this, namely that the reset may
only alter its state if the immediately preceding reset is in state b. We will return
to the scope of a cascade product in Sec. 5.

A reset R = (B, Γ, δ) is b-biased, where b ∈ B, if for every input a ∈ Γ we
have aR = idB or for all q ∈ B we have aR(q) = b. In the second case, we write
aR ≡ b. A reset R is biased if it is b-biased for some b. We can now state:

Theorem 3. A language L is piecewise testable iff it is recognized by a locally
b-triggered cascade product of b-biased resets.

Notice that this yields a Krohn-Rhodes decomposition of AL by Proposition 1.
We will dedicate the remainder of this section to proving this result. To this end
we first verify that all piecewise testable languages are recognized by a locally
b-triggered cascade product of b-biased resets. Without loss of generality we will
henceforth assume b = 1 (otherwise we rename the states).

Classifying Regular Languages via Cascade Products of Automata 5

By the definition of piecewise testable languages above it is sufficient to show
that every language of the form L = Γ ∗a1Γ

∗ · · ·Γ ∗anΓ ∗ is recognized by such
a product: Boolean combinations can be recognized by direct products and a
direct product of locally 1-triggered products is again locally 1-triggered. Given
L, we define n 1-biased resets R1, . . . ,Rn by setting3:

(a, (x1, . . . , xi−1))
Ri(b) =

{
1 if xi−1 = 1 ∧ a = ai
b otherwise

for all b ∈ B, a ∈ Γ and (x1, . . . , xi−1) ∈ Bi−1. Then every Ri is 1-biased and
R1 ∗ · · · ∗ Rn is strictly locally 1-triggered and evidently accepts L with initial
state q0 = (0, . . . , 0) and final states {(1, . . . , 1)}.

Before embarking on showing the converse, we need a bit of preparation:

Remark 1. Let R = (B, Γ, δ) be a 1-biased reset and let Γ1 = {a ∈ Γ |aR ≡ 1}.
Then4 L(R) = {∅, Γ ∗,

⋃
a∈Γ1

Γ ∗aΓ ∗,
⋂
a∈Γ1

Γ ∗aΓ ∗}. In particular all languages
from L(R) are piecewise testable.

We now investigate the languages recognized by cascade products of biased re-
sets:

Lemma 1. Let A = (Q,Γ, δA) be a semiautomaton and let R = (B, Γ ×Q, δR)
be a 1-biased reset. Then every language recognized by A ∗ R is a finite union of
languages of one of the following three forms (for suitable p0, pF ∈ Q):

(1) L ∈ L(A)
(2) L =

⋃
(a,q)∈S1

L(A, p0, {q}) · a · L(A, aA(q), {pF })

(3) L =
(⋃

(a,q)∈S1

L(A, p0, {q}) · a · Γ ∗
)
∩ L(A, p0, {pF })

where S1 = {(a, q) ∈ Γ ×Q | (a, q)
R
≡ 1}.

The proof of this lemma is not difficult, but omitted due to space constraints.
The reader is referred to [5].

Lemma 2. If A := R1 ∗ · · · ∗ Rn is a strictly locally 1-triggered cascade product
of 1-biased resets Ri = (B, Γ × Bi−1, δRi), i = 1, . . . , n, then every language
recognized by A with accepting states {(x1, . . . , xn)|xn = 1} ⊆ Bn is a finite
union of languages of the form Γ ∗a1Γ

∗ · · ·Γ ∗amΓ ∗, m ∈ N0.

The proof of this lemma is by induction on n and uses Lemma 1 and Remark 1.
For details the reader is again referred to [5].

This enables us to complete the proof of Theorem 3. Let A be a locally 1-
triggered cascade product of 1-biased resets. Then A is a direct product of strictly
3 We use the convention Γ × B0 = Γ and accordingly (a, (x1, . . . , xi−1)) = a if i = 1.
4 Given a language L ⊆ Γ ∗ we denote the complement language by L = Γ ∗ \ L.

6 M. Gelderie

locally 1-triggered cascade products of 1-biased resets. Therefore all languages
from L(A) are Boolean combinations of the languages recognized by strictly lo-
cally 1-triggered products. Since the piecewise testable languages form a Boolean
algebra, it is sufficient to show that all strictly locally 1-triggered cascade prod-
ucts of 1-biased resets recognize only piecewise testable languages.

Hence assume that A := R1 ∗ · · · ∗ Rn is strictly locally 1-triggered. Let
q0 ∈ Bn and F = {(f1,1, . . . , f1,n), . . . , (fr,1, . . . , fr,n)}. Since L(A, q0, F) =⋃r
i=1 L(A, q0, {(fi,1, . . . , fi,n)}) we may assume that F = {(f1, . . . , fn)}. Sup-

pose q0 = (q0,1, . . . , q0,n) and let q0,i = 1. Then, because A is strictly lo-
cally 1-triggered, L = L(A, q0, F) is the intersection of the languages J =
L(R1 ∗ · · · ∗ Ri, (q0,1, . . . , q0,i), {(f1, . . . , fi)}) and K = L(R̃i+1 ∗ Ri+2 ∗
· · · ∗ Rn, (q0,i+1, . . . , q0,n), {(fi+1, . . . , fn)}) where R̃i+1 is obtained from Ri+1

by treating all inputs a ∈ Γ as (a, (0, . . . , 0, 1)). Since both resulting products
are again strictly locally 1-triggered, we may assume that q0 = (0, . . . , 0).

Now assume that fn = 1. Then, since A is strictly locally 1-triggered and
since all resets are 1-biased, we have f1 = . . . = fn = 1 or the language L =
L(A, q0, {(f1, . . . , fn)}) is empty. Hence L(A, q0, {(x1, . . . , xn)|xn = 1}) = L,
since (1, . . . , 1) is the only state with xn = 1 reachable from q0. By Lemma 2 we
see that L is a finite union of languages of the form Γ ∗a1Γ

∗ · · ·Γ ∗arΓ ∗.
If fn = 0 we pick i ∈ {1, . . . , n − 1} maximal (if it exists) with fi = 1.

If no such i exists, then clearly L = L(R1, 0, {1}), which is piecewise testable.
Hence we assume such an index i exists. Since A is strictly locally 1-triggered
we see that f1 = · · · = fi = 1, since otherwise (f1, . . . , fn) is again unreachable
from q0. Furthermore we must have fi+2 = · · · = fn = 0 for the same rea-
son. This implies that Ri+2, . . . ,Rn are irrelevant to the acceptance behavior of
(A, q0, (f1, . . . , fn)). Thus we may assume that i = n− 1.

Using the results from the case fn = 1 we get that K := L(R1 ∗ · · · ∗
Rn−1, (0, . . . , 0), {(1, . . . , 1)}) is a finite union of languages Γ ∗a1Γ

∗ · · ·Γ ∗arΓ ∗.
Now by Lemma 1 L is a finite union of languages of the form KσΓ ∗ ∩K. Since
the piecewise testable languages are closed under the Boolean operations this
concludes the proof.

4 Commutative Languages

In this section we embed the well known results on commutative languages
into our framework. We first recall the definition. For w = a1 · · · an ∈ Γ ∗ let
Perm(w) = {aπ(1) · · · aπ(n)|π ∈ Sn}, where Sn denotes the symmetric group
on n points. A language L is commutative if Perm(w) ⊆ L for every w ∈ L.
This is evidently the case iff M(L) is commutative iff AL is commutative. Recall
that a semiautomaton is commutative if wA(p) = q implies vA(p) = q for all
v ∈ Perm(w).

Definition 2. Let L ⊆ Γ ∗ be regular.

Classifying Regular Languages via Cascade Products of Automata 7

(a) If there exists N ⊆ N0 and a0 ∈ Γ with L = {w ∈ Γ ∗| |w|a0 ∈ N}, then L is
called 1-semilinear (with respect to a0)5 6.

(b) A semiautomaton A, such that there exists a letter a0 ∈ Γ with a0
A 6= id

and aA = id for all a0 6= a ∈ Γ is called one letter automaton (OLA) (with
respect to a0).

1-semilinear languages are commutative. Clearly languages accepted by OLA are
1-semilinear. Furthermore 1-semilinear languages yield canonical DFA, which are
OLA (for the proof one can use, for instance, Moore’s minimization algorithm).
A cascade product, such that the automaton it defines is an OLA, is a one letter
cascade product. We recall that a language is commutative iff it is a Boolean
combination of 1-semilinear languages (for details the reader is referred to [10]).

We now turn towards characterizing OLA by their Krohn-Rhodes decompo-
sitions. We first observe that minimal OLA (i.e. those that are canonical DFA for
some (1-semilinear) language L) have a very simple form. If AL = (Q,Γ, q0, δ, F)
is the minimal DFA for a 1-semilinear language L (with respect to a ∈ Γ) then
there exist i < j minimal, such that wiAL(q0) = wj

AL(q0), where wk = ak for
k ∈ N0. Since AL is an OLA w.r.t. a all states from Q occur in the sequence
w0

AL(q0), w1
AL(q0), . . . , wj−1

AL(q0) (AL is minimal). Set qk := wk
AL(q0). Then

we obtain two disjoint sets Qtail = {q0, . . . , qi−1} and Qloop = {qi, . . . , qj−1}.

Lemma 3. Let AL be an OLA. Then AL ≤ R1 ∗ · · · ∗ Ri × C, where R1 ∗ · · · ∗
Ri is a one letter cascade product of 1-biased resets and C is a cyclic one letter
grouplike automaton of order j − i (where i < j are as above).

Proof. Choose i and j as in the previous paragraph. For R1 ∗ · · · ∗ Ri we
pick the product recognizing (Γ ∗aΓ ∗)i as constructed in Sec. 3. We define C =
(Qloop, Γ, δ′) by δ′(x) = xAL |Qloop

for x ∈ Γ . Pick r ∈ Qloop such that wiC(r) =
qi, i.e. r is chosen such that after seeing i a’s we end up in the first state of
Qloop visited when starting from q0. Define A ⊆ Bi×Qloop by starting out from
(0, . . . , 0, r) and adding all states reachable in R1 ∗ · · · ∗ Ri×C. Then A defines
a subsemiautomaton. Notice that for (x1, . . . , xi, q) ∈ A there exists 0 ≤ k ≤ i
such that x1 = · · · = xk = 1 and xk+1 = · · · = xi = 0. Denote this integer k by
max(x1, . . . , xi). Then we define ψ : A → Q by (x1, . . . , xi, q) 7→ qmax(x1,...,xi) if
max(x1, . . . , xi) < i and q otherwise. Is is left to the reader to verify that ψ is a
surjective homomorphism onto AL. ut

The grouplike automaton C in the lemma above need not be simple. Hence we
decompose C further in order to arrive at a Krohn-Rhodes decomposition. It is
well known that for every finite cyclic group C we have C ∼= Z/mZ ∼= ×si=1Z/miZ
where |C| = m =

∏s
i=1mi and the mi are pairwise coprime prime powers. We

will give an automaton theoretic equivalent of this fact. Denote by Cn the group
(Z/nZ,+), n ∈ N, and denote the n-class of an integer i by [i]n. Returning to

5 The name results from the fact that the Parikh image of such a language is deter-
mined by just one dimension.

6 Here |w|a denotes the number of occurrences of the letter a ∈ Γ in w.

8 M. Gelderie

the grouplike automaton from the previous lemma, let the order of C be m.
Define H = (Cm, Γ, δH) where xH([i]m) = [i + 1]m if x = a and [i]m otherwise,
x ∈ Γ . Evidently C ∼= H and so in particular C ≤ H. Define Ci = (Cmi , Γ, δ

Ci)
in the same way as H (that is for x ∈ Γ let xCi([k]mi) = [k + 1]mi if x = a and
[k]mi

otherwise). Then evidently all Ci are one letter cyclic grouplike automata
and we have H ∼= C1 × · · · × Cs. For the proof of this statement, one uses the
(group) isomorphism obtained from classical group theory and verifies that it is
also a homomorphism of automata. It remains to decompose grouplike one letter
automata of the form C = (Cpk , Γ, δ) for some prime p and some k ∈ N.

Lemma 4. C ≤ (Cp, Γ, δ1) ∗ · · · ∗ (Cp, Γ × Ck−1
p , δk), for cyclic grouplike au-

tomata (Cp, Γ × Ci−1
p , δi), 1 ≤ i ≤ k. The cascade product defines an OLA.

Proof. The proof is by induction on k. If k = 1 there is nothing to show.
For the induction step we define D = (Cp, Γ, δD) by xD([i]p) = [i + 1]p if
x = a ∈ Γ and [i]p otherwise, x ∈ Γ . Then define H = (Cpk−1 , Γ × Cp, δ

H)

by (a, [p− 1]p)
H

([i]pk−1) = [i + 1]pk−1 and (x, [r]p)
H

([i]pk−1) = [i]pk−1 for all
(x, [r]p) 6= (a, [p−1]p). Observe that D ∗ H is an OLA. By the induction hypoth-
esis and Theorem 1 we are done if we show that C ≤ D ∗ H. To this end define
ϕ : Cp×Cpk−1 → Cpk by ϕ([i]p, [j]pk−1) = [(i mod p) + j · p]pk . This mapping is
well-defined (as one easily verifies) and is a homomorphism of semiautomata. We
only treat the case of the letter a, the case of the remaining letters being trivial.
We have aC(ϕ([p− 1]p, [j]pk−1)) = [(p− 1 + j · p) + 1]pk = ϕ([0]p, [j + 1]pk−1). If
0 ≤ i < p− 1, then aC(ϕ([i]p, [j]pk−1)) = [i+ j · p+ 1]pk = ϕ([i+ 1]p, [j]pk−1). ut

In summary, we have shown:

Theorem 4. Let L ⊆ Γ ∗. The following are equivalent:

(1) L is commutative
(2) AL ≤

(
×ki=1 Ri,1 ∗ · · · ∗ Ri,ni

)
×
(
×ri=1 Ci,1 ∗ · · · ∗ Ci,mi

)
, where all cascade

products define one letter automata, all resets are biased, all grouplike au-
tomata are cyclic of prime order and the orders of Ci,j and Ci′,j′ are equal
iff i = i′.

5 The Scope of Cascade Products

In Definition 1 we introduced the scope of a cascade product. Notice this defini-
tion was only stated for cascade products consisting of resets. We are therefore
only dealing with star-free languages. We now want to use this notion to in-
vestigate language classes: Given a class C of star-free languages (e.g. piecewise
testable languages, R-trivial languages etc.), what can be said about the scope
of a cascade product recognizing the languages from C? If there exists k ∈ N0,
such that every L ∈ C is recognized by a cascade product of scope at most k,
then we say C has constant scope or has scope k. From Theorem 3 we can deduce:

Proposition 2. The class of piecewise testable languages has scope 1.

Classifying Regular Languages via Cascade Products of Automata 9

Recall that a language is R-trivial if its syntactic monoid M(L) is R-trivial, i.e.
if mM(L) = nM(L) iff m = n for all m,n ∈M(L). We have:

Theorem 5. The class of R-trivial languages has scope 2.

The idea of the proof is to decompose anR-trivial language L into a union of left-
deterministic products7 and then to show how to cover the minimal automata
for such products by a scope 2 product of biased resets. For a detailed proof,
which we omit due to space constraints, the reader is referred to [5].

6 Cascade Products and Dot-Depth

In this section we will make extensive use of first order logic. We will be using
formulas from the logic FO[min,max, (Pa)a∈Γ , <, S]. Such formulas will be in-
terpreted in word models: Let w = b1 · · · bm ∈ Γ ∗. Then the model associated
with w is denoted w = ({1, . . . ,m}, 1,m, ({i|bi = a})a∈Γ , <, S) where S(x, y)
iff y = x + 1 and < is the usual order on natural numbers. If ϕ is a sentence
we write L(ϕ) = {w ∈ Γ ∗| w |= ϕ} for the language specified or accepted by
ϕ. If ϕ(x̄) has free variables x̄ = (x1, . . . , xn) then we write (w, k̄) |= ϕ(x̄) for
k̄ = (k1, . . . , kn) if ϕ holds in w with xi interpreted by ki.

As usual we denote by Σn the set of FO-formulas, which are equivalent to
a formula in prenex normal form with n quantifier alternations beginning with
a block of existential quantifiers, e.g. ∃x̄1∀x̄2 · · ·Qnx̄nϕ(x̄1, . . . , x̄n) where ϕ is
quantifier free and Qn is existential iff n odd. We then define Πn to be the set of
formulas, the negation of which is in Σn and we set ∆n = Σn∩Πn. Given a set of
formulas Φ we define BC(Φ) to be the set of all Boolean combinations of formulas
in Φ. Immediately from the definitions one gets BC(Σn) = BC(Πn) ⊆ ∆n+1 and
BC(∆n) = ∆n for all n ∈ N. Also, we recall that disjunctions and conjunction
of Σn (resp. Πn) formulas is again a Σn (resp. Πn) formula. Given a set Φ of
formulas, we often write L ∈ Φ if L = L(ϕ) for some sentence ϕ ∈ Φ.

We now recall the dot-depth of star-free languages. To this end let B0 be the
set of all finite and co-finite languages. For n ∈ N0 define Bn+1 to be the set of all
Boolean combinations of languages L1a1L2 · · ·Ln−1an−1Ln where L1, . . . , Ln ∈
Bn and a1, . . . , an ∈ Γ . One can show that

⋃
n∈N0

Bn is the set of star-free
languages8. The dot-depth of a language L is the number n ∈ N, such that
L ∈ Bn \ Bn−1 (or 0 if L ∈ B0). The dot-depth is intimately tied to logic:

Theorem 6 (Thomas, [16]). L ∈ Bn iff L ∈ BC(Σn) for n ∈ N.

Notice the theorem makes no statement about level 0. The following theorem is
due to Brzozowski and Cohen. In its original formulation it did not make any
references to logic. We give an alternative proof using logic and can thereby place
the languages more precisely within a given level of the hierarchy9:
7 Recall a product Γ0a1Γ1a2Γ2 · · · anΓn is left-deterministic if for every i = 1, . . . , n

we have ai /∈ Γi−1 (see [1, 9] for details).
8 See [2, 9, 10] for details.
9 The result from [2] yields L ∈ Bn+1 = BC(Σn+1), which is a superset of ∆n+1.

10 M. Gelderie

Theorem 7 (Cohen, Brzozowski, [2]). Let L be recognized by a cascade prod-
uct R1 ∗ · · · ∗ Rn of n resets. Then L ∈ ∆n+1 and so has dot-depth at most
n+ 1.

Proof. The proof is by induction on n. The induction start is left to the reader.
For the induction step write A = R1 ∗ · · · ∗ Rn−1 = (Q,Γ, δA). Then L(A) ⊆ ∆n

by the induction hypothesis. Let L(q, b) = L(A ∗ Rn, (q0, b0), {(q, b)}). Then
every language in L(A ∗ Rn) is a union of languages of this form. It is sufficient
to show L(q, b) ∈ Σn+1 for all states (q, b). The claim follows from the fact that
L(q, b) ∈ Σn+1 as well, hence L(q, b) ∈ Σn+1 ∩Πn+1 = ∆n+1.

We pick a formula ϕq(x) ∈ ∆n, such that for w = a1 · · · am ∈ Γ ∗ we have
(w, k) |= ϕq(x) iff a1 · · · ak ∈ L(q) = L(A, q0, {q}) for q ∈ Q. Denote by Γ (i) ⊆
Γ × Q the set of inputs inducing the constant i-mapping in Rn for i ∈ B.
Then L(q, b) is specified by ϕq(max)∧∃x∃z1∀y∀z2

(∨
(a,q′)∈Γ (b) ϕq′(x)∧Pa(z1)∧

S(x, z1) ∧
(

(S(y, z2) ∧ y > x) →
∧

(a,q′)∈Γ (1−b)(¬ϕq′(y) ∨ ¬Pa(z2))
))

, which is
in Σn+1 since ϕq ∈ ∆n for all q ∈ Q. ut

We will now refine the result from Theorem 7. However, before moving on,
we recall from [1] that the state set Q of a cascade product of biased resets is
partially ordered, i.e. there exists a partial order � on Q, such that for all a ∈ Γ
and all q ∈ Q we have q � a(q). We note that we can extend this partial order,
to a total order, which is still compatible with the transitions in the way just
outlined. We will say the state set is ordered.

Lemma 5. Let A = (Q,Γ, δA) be a semiautomaton, such that L(A) ⊆ ∆n for
some n ∈ N. Then L(A ∗ R1 ∗ · · · ∗ Rk) ⊆ ∆n+1, where Ri is a biased reset for
i = 1, . . . , k, k ∈ N.

Proof. Let S = {1, . . . , r} be the state space of O = R1 ∗ · · · ∗ Rk. We may
assume the compatible order on S to coincides with ≤ (the usual order on N).
Denote by Γi,j ⊆ Γ ×Q the set of inputs which map i to j. Notice that in a run
O can change its state at most r − 1 times.

Write B := A ∗ O. Let L = L(B, (q0, i0), {(qF , f)}), where q0, qF ∈ Q and
i0, f ∈ S. Then all languages in L(B) are unions of languages of this form (and
therefore defined by disjunctions of the corresponding formulas). For q ∈ Q and
w = a1 · · · am ∈ Γ ∗ let ϕq(x) ∈ ∆n be such that (w, t) |= ϕq(x) iff a1 · · · at ∈
L(A, q0, {q}). Then clearly L(A, q0, {q}) = L(ϕq(max)). We treat only the case
i0 6= f . The other case requires an adjustment term, which checks the possibility
of staying in i0 = f . Define θ to be

r−1∨
j=1

∃x1 · · · ∃xj∀y0 · · · ∀yj
(
y0 < x1 < y1 · · · < yj−1 < xj < yj ∧

∨
(i1,...,ij−1)∈Sj−1(

ψi0,i1(x1) ∧ . . . ∧ ψij−1,f (xj) ∧
j−1∧
k=0

∧
s6=ik

¬ψik,s(yk) ∧
∧
s6=f

¬ψf,s(yj)
))

Classifying Regular Languages via Cascade Products of Automata 11

where ψt,u(x) ≡
(
x = min∧

∨
(a,q0)∈Γt,u

Pa(min)
)
∨
(
x > min∧∃y(S(y, x) ∧∧

(a,q)∈Γt,u
ϕq(y)∧Pa(x))

)
. ψt,u(x) verifies that O changes to state u upon read-

ing the letter at position x if O was in state t before. θ says that for some suitable
j we have precisely j state changes leading from i0 to f . Since we can replace
∃y(S(y, x)∧· · · by ∀y(S(y, x)→ · · · , we have ψi,j ∈ ∆n, hence θ ∈ Σn+1. Again
(see proof of Theorem 7) we conclude θ ∈ ∆n+1 (the complement language is
also in Σn+1). Clearly L = L(θ ∧ ϕqF

(max)), which is a ∆n+1 formula. ut

Hence biased resets as factors in a cascade product have a limited impact on
the dot-depth. We now define the biased reset complexity of a cascade product.
Informally, the biased reset complexity is the number of resets in a product,
where every block of biased resets is counted as a single reset. For instance, indi-
cating biased resets by a square and non-biased resets by a circle, the following
product has biased reset complexity 6:

More formally, let R1 ∗ · · · ∗ Rn be a cascade product of resets. Let B =
{(i, j)|Rk biased for i ≤ k ≤ j and Ri−1,Rj+1 not biased}. Let m be the num-
ber of biased resets in the product. The biased reset complexity is n−m+ |B|.
The following theorem is now immediate:

Theorem 8. Let R1 ∗ · · · ∗ Rn be a cascade product of resets with biased reset
complexity k. Then L(R1 ∗ · · · ∗ Rn) ⊆ ∆k+1.

The following example shows that the bound given in Theorem 8 is not tight.

Example 1. Consider L := Γ ∗aΓ ∗bΓ ∗aΓ ∗bΓ ∗ where Γ = {a, b}. Then define
three resets as depicted in Fig. 1. The cascade product R1 ∗ R2 ∗ R3 recognizes L
with initial state (0, 0, 0) and final states {(0, 1, 1), (1, 1, 1)}. Notice that Theorem
7 yields L ∈ ∆4, Theorem 8 yields L ∈ ∆3, but L ∈ Σ1 as one easily verifies.

10

a

b

b

a

(a) R1

10
(b, 1)

(b, 1)

(b) R2

10
(b, 1, 1)

(b, 1, 1)

(c) R3

Fig. 1. Resets for the language L. Inputs, which have not been specified, are assumed
to induce the identity mapping.

7 Conclusion

Motivated by the Krohn-Rhodes Theorem we classified several classes of regu-
lar languages via their cascade decompositions. The concepts used, respectively
introduced in this study, were biased resets, locally triggered cascade products,
and the scope and the biased reset complexity of cascade products.

12 M. Gelderie

This paper gives initial results on the introduced concepts; it leads to several
interesting questions left open here. For example, it should be answered whether
for each n there is a star-free language Ln which needs at least scope n in the
cascade decomposition of any (minimal) automaton accepting Ln. As another
direction for future research (connected with the final result), we mention that
the biased reset complexity of decompositions of automata for star-free languages
seems to deserve a closer study.

Acknowledgments The author thanks his supervisor Wolfgang Thomas and
the reviewers of this paper for their advice and many helpful suggestions.

References

1. Brzozowski, J.A., Fich, F.E.: Languages of J-trivial monoids. Journal of Computer
and System Sciences 20(1) (1980) 32 – 49

2. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. Journal of Computer
and System Sciences 5(1) (1971) 1 – 16

3. Eilenberg, S.: Automata, Languages, and Machines: Volume A. Pure and Applied
Mathematics. Elsevier, Burlington, MA (1974)

4. Eilenberg, S.: Automata, Languages, and Machines: Volume B. Pure and Applied
Mathematics. Elsevier, Burlington, MA (1974)

5. Gelderie, M.: Classifying regular languages via cascade products of automata.
Diploma thesis, RWTH Aachen University (2011)

6. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, New York (1968)
7. Krohn, K., Rhodes, J.: Algebraic theory of machines. I. Prime decomposition

theorem for finite semigroups and machines. Trans. Amer. Math. Soc 116 (1965)
450–464

8. Meyer, A.R.: A note on star-free events. J. ACM 16(2) (1969) 220–225
9. Pin, J.E.: Varieties Of Formal Languages. Plenum Publishing Co. (1986)

10. Pin, J.E.: Syntactic semigroups. In Rozenberg, G., Salomaa, A., eds.: Handbook
of Formal Languages, Vol. 1: Word, Language, Grammar. Springer-Verlag New
York, Inc., New York, NY, USA (1997) 679–746

11. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Informa-
tion and Control 8(2) (1965) 190 – 194

12. Simon, I.: Piecewise testable events. In: Proceedings of the 2nd GI Conference
on Automata Theory and Formal Languages, London, UK, Springer-Verlag (1975)
214–222

13. Straubing, H.: On finite J-trivial monoids. Semigroup Forum 19 (1980) 107–110
14. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser

Verlag, Basel, Switzerland, Switzerland (1994)
15. Straubing, H., Thérien, D.: Partially ordered finite monoids and a theorem of I.

Simon. J. Algebra 119(2) (1988) 393–399
16. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer

and System Sciences 25(3) (1982) 360 – 376

