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Abstract. Some classes of sets of vectors of natural numbers are intro-
duced as generalizations of the semi-linear sets, among them the ‘simple
semi-polynomial sets.’ Motivated by verification problems that involve
arithmetical constraints, we show results on the intersection of such gen-
eralized sets with semi-linear sets, singling out cases where the non-
emptiness of intersection is decidable. Starting from these initial results,
we list some problems on solvability of arithmetical constraints beyond
the semi-linear ones.

1 Introduction

The study of arithmetical constraints, in particular regarding their effective solv-
ability, is of central interest in several branches of theoretical computer science.
One of these fields, which serves as motivation for the present work, is the veri-
fication of infinite-state systems where the aspect of infinity arises by including
the domain of the natural numbers in the model under consideration.

In the context of infinite-state verification, conditions on vectors of natural
numbers usually occur in two roles. First, the considered transition systems A
are assumed to have some mechanism of ‘counting’ and thus generate, by each
run, some vector of Nn; the set of all such vectors is the set AA ⊆ Nn generated
by A. An example is the computation of the Parikh mapping by an automaton
on words over an alphabet with letters a1, . . . , an: the occurrences of the letters
ai are counted by updating a vector from Nn in each step, incrementing the
i-th component by one for an ai-labeled transition. Taking finite automata or
pushdown automata A, the corresponding sets AA are known to coincide with
the semi-linear sets (Parikh’s Theorem [12]).

The second role of arithmetical conditions enters when the vectors arising
from the runs of the transition systems under consideration are also subject to
an ‘acceptance condition’ ϕ. In the context of automata, acceptance of an input
word w then means that a corresponding run reaches a ‘final state’ and generates
a vector that satisfies ϕ or, in other words, belongs to the set Aϕ defined by ϕ. As
a recent model of this kind, Klaedtke and Rueß [9] proposed ‘Parikh automata,’
which use more general transitions than those mentioned above: in the update



operation an arbitrary vector of Nn is added (rather than just 1 in a single
component), and for the constraints ϕ formulas of Presburger arithmetic are
used (which precisely define the semi-linear sets).

A fundamental property of Parikh automata is the decidability of the non-
emptiness problem. This is established easily by observing that the nonemptiness
of the language recognized by a Parikh automaton A with acceptance condition
ϕ is equivalent to the nonemptiness of the intersection AA ∩ Aϕ. Since AA is
semi-linear, and since the semi-linear sets are effectively closed under intersec-
tion (and their nonemptiness is trivially decidable), one obtains an algorithm for
solving the nonemptiness problem.

Many other papers on model-checking infinite-state systems follow similar
ideas; see, for example, [1, 3, 7]. Another application area is the study of XML-
document specifications. As observed by several authors [2, 10, 13, 14], the au-
tomata on unranked trees which capture document type definitions can be ex-
tended by counting conditions (on the occurrences of certain data as sons of an
XML-tree node). If these arithmetical conditions are restricted to semi-linear
sets, then the desired decidability results on type checking can be shown.

The purpose of the present paper is to explore possibilities of extending
the framework of semi-linear sets (or, equivalently, Presburger arithmetic or
systems of linear equations), while still keeping the fundamental property that
nonemptiness of intersection is decidable. As noted above, the two sets of such an
intersection may arise differently (e.g., as generated by a system and as specified
by an acceptance condition), so it is reasonable to consider intersections A ∩ B
where A and B are possibly from different classes.

We basically consider two classes extending the semi-linear sets. Firstly, we
introduce ‘simple semi-polynomial sets’ and show initial results on closure prop-
erties with respect to intersection (with implications for deciding nonemptiness).
Secondly, some variants of ‘quadratic’ sets are introduced, where a recent result
of Grunewald and Segal [5] helps to show the decidability of certain nonemp-
tiness problems. As a conclusion, we suggest some questions motivated by our
observations.

In the present paper we do not address applications in detail, for example in
concrete verification problems. Instead, we focus on the arithmetical aspects and
only remark here that in the scenario above (regarding the sets AA and Aϕ) we
obtain cases which are substantially more general (or, at least, different) than
the existing framework of semi-linear sets and still allow an algorithmic solution.

2 Preliminaries

Recall that a subset A of Nn, n ≥ 1, is called linear if there are vectors
ū0, ū1, . . . , ūm ∈ Nn, m ≥ 0, such that

A = {ū0 + k1ū1 + · · ·+ kmūm | k1, . . . , km ∈ N} . (1)
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The vector ū0 is called the constant vector, the vectors ū1, . . . , ūm the periods,
and all of them the generators of A. Alternatively, we may replace (1) with

A = {(L1(k1, . . . , km), . . . , Ln(k1, . . . , km)) | k1, . . . , km ∈ N} , (2)

where Li(k1, . . . , km) := (ū0)i+k1(ū1)i+· · ·+km(ūm)i for i = 1, . . . , n.3 In other
words, L1, . . . , Ln ∈ N[X1, . . . , Xm] are linear forms with nonnegative integer
coefficients. A finite union of linear sets is called semi-linear.

In [4] Ginsburg and Spanier showed that the solutions of a linear equation
c0 +

∑n
i=1 cixi = c′0 +

∑n
i=1 c′ixi, where ci, c

′
i ∈ N, for i = 0, . . . , n, form a

semi-linear set. Further, if we close the sets defined by linear equations under
Boolean operations and projection, the Presburger-definable sets (i.e., the first-
order-definable sets over (N,+)) are generated. Ginsburg and Spanier [4] also
showed that the semi-linear sets coincide with the Presburger-definable ones.
Moreover, all the logical closure operations are effective. For instance, given the
generators of A and B, generators of A∩B can be computed. This implies that
the nonemptiness of this intersection is decidable.

For a finite, nonempty alphabet Σ = {a1, . . . , an}, the Parikh mapping
Φ : Σ∗ → Nn is defined by Φ(w) := (|w|a1 , . . . , |w|an), for each w ∈ Σ∗. Parikh’s
Theorem [12] asserts that the Parikh image Φ(L) := {Φ(w) | w ∈ L} of a
context-free language L over Σ is semi-linear. Conversely, every semi-linear set
is the Parikh image of a context-free language (even of a regular language).

3 Simple Semi-Polynomial Sets

A natural generalization of semi-linear sets involves general polynomials rather
than just linear ones in (2): A subset A of Nn, n ≥ 1, is a polynomial set if there
are polynomials P1, . . . , Pn ∈ N[X1, . . . , Xm] such that

A = {(P1(k1, . . . , km), . . . , Pn(k1, . . . , km)) | k1, . . . , km ∈ N} . (3)

A finite union of polynomial sets is called semi-polynomial.
Since the polynomials in (3) may have mixed terms, i.e., terms in which

more than one variable occur, we get a class which is not manageable. In fact, the
nonemptiness of intersection is undecidable even for the case of a two-dimensional
polynomial set and a semi-linear one. This is clear by a simple reformulation of
Hilbert’s Tenth Problem (note that the identity relation idN := {(k, k) | k ∈ N}
is a linear set):

∃k1 . . . km P (k1, . . . , km) = 0 , where P ∈ Z[X1, . . . , Xm]
iff ∃k1 . . . km Q(k1, . . . , km) = R(k1, . . . , km) , where Q,R ∈ N[X1, . . . , Xm]

iff
{(

Q(k1, . . . , km)
R(k1, . . . , km)

)
| k1, . . . , km ∈ N

}
∩ idN 6= ∅ .

3 For a vector x̄ ∈ Nn, we write (x̄)i for the i-th component of x̄.
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Therefore, we restrict the polynomials in (3) by disallowing mixed terms and
obtain sets of the form

 c1 + P11(k1) + · · ·+ P1m(km)
...

cn + Pn1(k1) + · · ·+ Pnm(km)

 | k1, . . . , km ∈ N

 , (4)

where c1, . . . , cn ∈ N, and Pij ∈ N[X] is a (univariate) polynomial without
constants, for each i = 1, . . . , n and j = 1, . . . ,m. A set defined in this way is
called a simple polynomial set, and simple semi-polynomial sets are finite unions
of simple polynomial sets.

In analogy to (1) for linear sets, a simple polynomial set as in (4) can be
represented in terms of its generators as follows:

{ū0 + k1ū1,1 + k2
1ū1,2 + · · ·+ kd−1

1 ū1,d−1 + kd
1 ū1,d

+ · · ·+ kmūm,1 + k2
mūm,2 + · · ·+ kd−1

m ūm,d−1 + kd
mūm,d

| k1, . . . , km ∈ N} ,

(5)

where ū0 and ūi,j (1 ≤ i ≤ m, 1 ≤ j ≤ d) are vectors from Nn. In this case, the
simple polynomial set is said to be of degree d. Note that from a representation
(4) one easily obtains (5), and vice versa.

Clearly, each (semi-)linear set is a simple (semi-)polynomial set. An interest-
ing special case is given by the simple quadratic sets

{ū0 + k1ū1,1 + k2
1ū1,2 + · · ·+ kmūm,1 + k2

mūm,2 | k1, . . . , km ∈ N}

and finite unions of such sets, the simple semi-quadratic sets.
Given the generators of a (simple) polynomial set as in (3) or (5), one can

decide whether a given vector v̄ = (v1, . . . , vn) belongs to this set; it suffices to
check the ki-values up to max{v1, . . . , vn}. Hence, a (simple) semi-polynomial
set is decidable.

Example 1. The set A1 := {(u1, u2) ∈ N2 | u2 = u2
1} is a simple quadratic set

since A1 = {(0, 0) + k(1, 0) + k2(0, 1) | k ∈ N}.
Let us verify that A1 is not semi-linear. Towards a contradiction, suppose

that A1 is a finite union of linear sets, say A1 =
⋃r

i=1 Bi, for some r ≥ 1. Since
A1 is infinite, there is some linear set Bi that contains at least two elements. Let
ū0 be the constant vector and ū1, . . . , ūm be the periods of Bi. If m = 0, or if all
periods of Bi are 0̄,4 then Bi has only one element, namely ū0, a contradiction. So
we can assume that ū1 is not 0̄. By definition of linear sets, ū0 +kū1 ∈ Bi ⊆ A1,
for all k ∈ N. Let ū0 = (u01, u02) and ū1 = (u11, u12). Then, by definition of A1,
we have for all k ∈ N

(u01 + ku11)2 = u02 + ku12 . (6)

Since ū1 6= 0̄, at least one of u11 and u12 is not zero. Hence, (6) is a poly-
nomial equation of degree one or two in k, which has at most two solutions.
Contradiction.
4 0̄ denotes a vector consisting only of zeroes.
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A copy of this argument shows that {(u1, u2) ∈ N2 | u2 = ud+1
1 } is not a

simple semi-polynomial set of degree d, for any d ≥ 1, and that {(u1, u2) ∈ N2 |
u2 = 2u1} is not a simple semi-polynomial set.

Example 2. The product relation Aprod := {(u, v, uv) | u, v ∈ N} ⊆ N3, which
is clearly polynomial, is not a simple semi-polynomial set. To verify this, the
simple comparison of growth rates does not suffice, and some structural analysis
is needed.

Towards a contradiction, assume that Aprod is a finite union of simple poly-
nomial sets, each of them of the form

A′ =


a + P1(k1) + · · ·+ Pm(km)

b + Q1(k1) + · · ·+ Qm(km)
c + R1(k1) + · · ·+ Rm(km)

 | k1, . . . , km ∈ N

 ,

where Pi, Qi, Ri ∈ N[X] are polynomials without constants, and where not all
of Pi, Qi, Ri are zero polynomials, for each i = 1, . . . ,m. Since Pi(0) = Qi(0) =
Ri(0) = 0 for i = 1, . . . ,m, we have, for each j ≥ 2,a

b
c

 ,

a + P1(1)
b + Q1(1)
c + R1(1)

 ,

a + Pj(1)
b + Qj(1)
c + Rj(1)

 ,

a + P1(1) + Pj(1)
b + Q1(1) + Qj(1)
c + R1(1) + Rj(1)

 ∈ Aprod .

Since Aprod is the product relation, we have

c = ab

c + R1(1) = (a + P1(1))(b + Q1(1))
c + Rj(1) = (a + Pj(1))(b + Qj(1))
c + R1(1) + Rj(1) = (a + P1(1) + Pj(1))(b + Q1(1) + Qj(1))

It follows that P1(1)Qj(1)+Pj(1)Q1(1) = 0. Since (Pi(1), Qi(1)) 6= (0, 0), for all
i = 1, . . . ,m, we have

P1(1) = Pj(1) = 0 and hence P1 = Pj ≡ 0 , or
Q1(1) = Qj(1) = 0 and hence Q1 = Qj ≡ 0 .

Since j ≥ 2 was arbitrarily chosen, all Pi or all Qi are zero polynomials, for
i = 1, . . . ,m, and thus, we have

A′ ⊆ {(a, y, ay) | y ∈ N} ⊆ Aprod , or A′ ⊆ {(x, b, bx) | x ∈ N} ⊆ Aprod .

Hence, there are s, t and a1, . . . , as, b1, . . . , bt such that

Aprod =
s⋃

i=1

{(ai, yi, aiyi) | yi ∈ N} ∪
t⋃

j=1

{(xj , bj , xjbj) | xj ∈ N} .

Projection to the first two components should yield N2. However, we obtain the
union of the sets {(ai, yi) | yi ∈ N} and {(xj , bj) | xj ∈ N}, which is a proper
subset of N2, a contradiction.
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As the semi-linear sets can be characterized as the Parikh images of the
regular and the context-free languages, one may ask for such a characterization of
the simple semi-polynomial sets. In [8] it is shown that all simple semi-polynomial
sets (and more sets, e.g., Aprod of Example 2) can be obtained as the Parikh
images of indexed languages, i.e., those languages which are recognized by level-
two pushdown automata (pushdown automata with a stack of stacks).

4 Intersection Problems

We show two results: Simple semi-polynomial sets are not closed under intersec-
tion whereas the intersection of a simple semi-polynomial set with a semi-linear
set of a ‘special kind’ is again a simple semi-polynomial set.

Theorem 3. There exist two simple quadratic sets the intersection of which is
not simple semi-polynomial.

Proof. Consider the simple quadratic sets

A =
{(

(k1 + 1)2 + (k2 + 1)2

k3

)
| k1, k2, k3 ∈ N

}
and B =

{(
k2

k

)
| k ∈ N

}
.

The intersection A∩B consists of the pairs (k2, k) where k2 = (k1+1)2+(k2+1)2,
for certain k1, k2, is a solution of the Pythagoras equation in positive integers. It
is known from elementary number theory (see, e.g., [6]) that these pairs coincide
with the pairs (w2(u2 + v2)2, w(u2 + v2)) where u, v, w are positive integers. By
the Two-Square Theorem (see, e.g., [6]), the latter pairs coincide with the pairs
(n2, n) of natural numbers where n ≥ 2 is even or divisible by some prime p ≡ 1
(mod 4).

Suppose that A ∩B is simple semi-polynomial, i.e. a union of sets

Ai =
{(

α + P1(k1) + · · ·+ Pm(km)
β + Q1(k1) + · · ·+ Qm(km)

)
| k1, . . . km ∈ N

}
(i = 1, . . . , s)

where α, β ∈ N and P1, . . . , Pm, Q1, . . . , Qm ∈ N[X] are nonzero polynomials
without constants. Setting k1 = · · · = km = 0, we obtain α = β2. Fixing some
j ∈ {1, . . . ,m} and setting kr = 0, for all 1 ≤ r ≤ s with r 6= j, we obtain
Pj(kj) + β2 = (Qj(kj) + β)2 and thus Pj(kj) = (Qj(kj))2 + 2βQj(kj), for each
kj ∈ N. If m ≥ 2, we would have for 1 < j ≤ m

P1(k1) + Pj(kj) + β2 = (Q1(k1) + Qj(kj) + β)2 ,

and hence, Q1(k1)Qj(kj) = 0, for all k1, kj ∈ N, which would imply that one of
Q1 and Qj is zero, a contradiction. Hence, we have m = 1 and can assume

Ai =
{(

(Ri(ki))2

Ri(ki)

)
| ki ∈ N

}
for some polynomial Ri ∈ N[X].
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Let N := 4K, where K is the least common multiple of the coefficients of
R1, . . . , Rs. Among these polynomials let R1, . . . , Rt be the ones of degree 1, say,
Ri = ai + bi(X), which yields, for i = 1, . . . , t,

Ri(N) = ai + biN =
m⋃

j=0

aij + NN (7)

as a disjoint union, for some 0 ≤ m < N . By Dirichlet’s Prime-Number Theorem,
each arithmetic progression c+NN, where c ≡ 3 (mod 4) and where c and N are
relatively prime, contains infinitely many primes q ≡ 3 (mod 4). Thus, c + NN
does not occur in the union (7). Now, let p be a prime with p ≡ 1 (mod N).
Then, for any n ∈ pc + pNN, the pair (n2, n) belongs to A ∩ B, which means
that

pc + pNN ⊆
s⋃

i=t+1

Ri(N) , (8)

where, for each i = t + 1, . . . , s, Ri is either a constant or of degree ≥ 2. In the
latter case we have, Ri(ki + 1)− Ri(ki) ≥ 2ki, for each ki ∈ N. In other words,
these differences tend to infinity, which contradicts (8). ut

We now exhibit a case of an intersection operation which does not lead out
of the simple semi-polynomial sets, respectively the semi-polynomial sets. We
consider the intersection with a special form of semi-linear set: A set A ⊆ Nn

is called componentwise linear if there are linear sets A1, . . . , An ⊆ N such that
A = A1 × · · · × An . The set A is called componentwise semi-linear if it is a
finite union of componentwise linear sets.

To simplify notation, in the sequel we do not distinguish between an ordinary
natural number and a one-dimensional vector of natural numbers.

Theorem 4. Let n ≥ 1. If A ⊆ Nn is componentwise semi-linear and B ⊆
Nn is simple semi-polynomial (respectively semi-polynomial) of degree d ≥ 1,
then A∩B is simple semi-polynomial (respectively semi-polynomial) of degree d.
Moreover, if A and B are given by their generators, generators of A ∩B can be
computed and hence nonemptiness of A ∩B be checked effectively.

Proof. We only consider simple semi-polynomial sets; the proof works in the
same way for semi-polynomial sets. Furthermore, it suffices to consider the case
that A is componentwise linear and B is a simple polynomial set. We construct
a simple semi-polynomial representation of A∩B by a refinement process which
successively covers more and more of the n components. For the intersection
of the projections of A and B to the first component we obtain a simple semi-
polynomial representation, which is then made thinner by taking into account
the other components, one by one. To simplify matters, let us first treat the case
that B is a simple quadratic set.
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Case 1. Let n = 1, i.e. A,B ⊆ N. Suppose A,B ⊆ N are given by

A = {u0 + k1u1 + . . . + kmum | k1, . . . , km ∈ N} ,

B = {v0 + k1v1 + k2
1w1 + · · ·+ krvr + k2

rwr | k1, . . . , kr ∈ N} ,

where the ui, vi, wi are natural numbers and vi + wi ≥ 1 for all i = 1, . . . , r. In
order to avoid trivial cases, assume ui ≥ 1 for all i = 1, . . . ,m.

Let g be the greatest common divisor of u1, . . . , um. Clearly, A ⊆ {u0 + kg |
k ∈ N}, and for sufficiently large c0 (we may take c0 := u0 + u1 · · ·um) the set

C := {c0 + kg | k ∈ N}

contains precisely the A-elements from c0 onwards.
The set A \ C is finite; so by decidability of B one computes the set F :=

(A \ C) ∩B.
The intersection A∩B is the union of F with C ∩B. Elements in C ∩B have

to be solutions of the congruence

v0 + k1v1 + k2
1w1 + . . . + krvr + k2

rwr ≡ c0 (mod g) . (9)

It suffices to check the congruence for values ki < g. If no solution exists,
we have C ∩ B = ∅ and A ∩ B = F . If a solution exists, say s̄ = (s1, . . . , sr) ∈
{0, . . . , g − 1}r, it produces the B-elements

x = v0 + m1v1 + m2
1w1 + . . . + mrvr + m2

rwr , (10)

where mi = si + nig, ni ∈ N.
In order to ensure x ≥ c0 (i.e. to obtain C∩B) it suffices to require

∑r
i=1 ni >

bc0/gc. Only finitely many C-elements are missed by this requirement; we collect
them in the finite set Es̄. The case

∑r
i=1 ni > bc0/gc is split into finitely many

subcases n1 ≥ l1j , . . . , nr ≥ lrj (where j ranges over a finite set J). If we write
lij + ni (ni ≥ 0) instead of ni ≥ lij and substitute mi = si + nig in (10) by
si + (lij + ni)g, we obtain the following simple quadratic set in the ni:

Cs̄,j = {v′0 + n1v
′
1 + n2

1w
′
1 + . . . + nrv

′
r + n2

rw
′
r | n1, . . . , nr ∈ N} . (11)

The intersection C ∩ B is the union of the finite sets Es̄ and the finitely
many simple quadratic sets Cs̄,j . Hence, A ∩ B is a simple semi-quadratic set.
Furthermore, the set is empty iff the finite set F mentioned above is empty and
the congruence (9) has no solution.

Case 2. Let n > 1. Consider a componentwise linear set A ⊆ Nn and a simple
quadratic set B ⊆ Nn:

A = A1 × · · · ×An ,

B = {v̄0 + k1v̄1 + k2
1w̄1 + · · ·+ krv̄r + k2

r w̄r | k1, . . . , kr ∈ N} ,

where v̄i, w̄i ∈ Nn.
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We analyze the intersection A ∩ B for the first component as above. If this
intersection is empty, this is also true for A ∩B and we are done. Otherwise we
invoke Case 1 for the first components of A and B, which shows that (A)1 ∩
(B)1 is a simple semi-quadratic set.5 If this intersection is finite (which means
that (11) above is empty), it suffices to decide for each of the corresponding n-
tuples (k1, . . . , kr) whether the second component of the A-element generated by
k1, . . . , kr belongs to the simple quadratic set given by the second components
of the B-elements.

If (A)1 ∩ (B)1 is infinite, consider a set Cs̄,j as constructed above. We have
to find the (B)2-elements of the form

(v̄′0)2 + n1(v̄′1)2 + n2
1(w̄

′
1)2 + · · ·+ nr(v̄′r)2 + n2

r(w̄
′
r)2 .

This is a simple quadratic set in the ni, and the procedure of Case 1 can be
invoked to find those vectors (n1, . . . , nr) which describe the second component of
an A-element. We obtain a simple semi-quadratic representation of (A)1,2∩(B)1,2

(the intersection of A and B restricted to the first two components), which
moreover is testable for nonemptiness. After n−1 steps of this kind the procedure
terminates with a simple semi-quadratic representation of A∩B, giving also the
information whether A ∩B = ∅.

The same argument is applicable to (simple) polynomial sets B instead of
simple quadratic ones. The simple quadratic expressions in (9), (10), (11) change
to (simple) polynomial ones, but the form of the solutions (m1, . . . ,mr) still is
of the form mi = si + nig since the component sets (A)j are (componentwise)
linear. So the proof carries over in the obvious way. ut

We have shown that for a (simple) semi-polynomial set B the intersection
with a componentwise semi-linear set A yields again a (simple) semi-polynomial
set whereas this fails in general for a simple semi-polynomial set A. The inter-
mediate case of a semi-linear set A remains open, even for the weaker statement
that nonemptiness of A∩B is decidable. Let us note that this decision problem
is as hard as for the intersection of semi-polynomial sets in general. In fact, a
decidability proof for semi-linear A and (simple) semi-polynomial B would im-
mediately yield decidability of nonemptiness for intersections of two arbitrary
(simple) semi-polynomial sets. The argument resembles the remark at the begin-
ning of Sect. 3. Consider C = {(P1(k1, . . . , kr), . . . , Pn(k1, . . . , kr)) | k1, . . . , kr ∈
N} and D = {(Q1(l1, . . . , ls), . . . , Qn(l1, . . . , ls)) | l1, . . . , ls ∈ N}. We have
C ∩ D 6= ∅ iff there are i1, . . . , in with P1(k1, . . . , kr) = i1 = Q1(l1, . . . , ls),
. . . , Pn(k1, . . . , kr) = in = Qn(l1, . . . , ls). This means that the polynomial set
(of dimension 2n)

B = {(P1(k̄), Q1(l̄), . . . , Pn(k̄), Qn(l̄)) | k1, . . . , kr, l1, . . . , ls ∈ N}

has a nonempty intersection with the linear set

A = {(i1(1, 1, 0, . . . 0) + · · ·+ in(0, . . . , 0, 1, 1) | i1, . . . , in ∈ N} .
5 For a set X ⊆ Nn, the set (X)i denotes {(x̄)i | x̄ ∈ X}. Further, note that (A)i = Ai

since A is componentwise linear.
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5 Quadratic Forms

It is known that the undecidability of Hilbert’s Tenth Problem holds for polyno-
mial equations of degree four and for systems of polynomial equations of degree
two (see [11]).

In this context, Xie, Dang, and Ibarra [16] solved a restricted case regarding
pairs of quadratic equations which are generated by products of linear forms.

If only a single quadratic form

Q(x1, . . . , xn) :=
∑

1≤i,j≤n

aijxixj +
∑

1≤i≤n

bixi + c

is considered, where aij , bi, c ∈ Z, for 1 ≤ i, j ≤ n, then the solvability of the
equation Q(x1, . . . , xn) = 0 has also been shown decidable, both in integers and
in natural numbers. The solvability in integers follows from Siegel’s work [15].
Regarding the solvability in natural numbers, a standard approach is to apply
Lagrange’s Theorem which characterizes the natural numbers as the sums of
four squares (of integers). However, adding this requirement for each variable to
a quadratic equation results in a system of quadratic equations, where Siegel’s
analysis does not apply. In a recent paper, Grunewald and Segal [5] show that
the solvability of quadratic equations in integers stays decidable even under
constraints given by linear inequalities:

Theorem 5 ([5]). Given a quadratic form Q ∈ Z[X1, . . . , Xn] and linear forms
L1, . . . , Lk ∈ Z[X1, . . . , Xn], it is decidable whether a system

Q(x1, . . . , xn) = 0 , (12a)
Lj(x1, . . . , xn) # cj ,where cj ∈ Z and # ∈ {<,≤}, for j = 1, . . . , k , (12b)
(x1, . . . , xn) ≡ (h1, . . . , hn) (mod m),where h1, . . . , hn ∈ Z, m ∈ N , (12c)

has a solution in Zn.

A decision procedure for solvability of quadratic equations in natural numbers
can be obtained from Thm. 5 by imposing linear constraints of the form −xi ≤ 0
for (12b).

The proof of the theorem requires deep number-theoretic constructions and
does not come (as yet) with a complexity analysis. Rather than studying the
general case it seems more tractable trying to isolate cases where reasonable
complexity bounds can be provided.

In the sequel, we demonstrate how the decidability of the solvability of
quadratic equations, in particular Thm. 5, can be applied to obtain two kinds
of generalizations of semi-linear sets which are yet so modest that decidability
results on the intersection problem are retained. The first result is concerned
with sets defined via solutions of quadratic equations, and the second one refers
to sets which are enumerated by quadratic and linear forms.

As a corollary of Thm. 5, the nonemptiness problem for the intersection of
a semi-linear set with the solution set of a quadratic equation is decidable. For
this, it suffices to recall that a semi-linear set is the solution set of a linear
(in)equation system [4].
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Corollary 6. Nonemptiness of the intersection of a semi-linear set A ⊆ Nn

with the solution set S of a quadratic equation Q(x1, . . . , xn) = 0 is decidable.

This can be applied, for example, to the following scenario indicated in Sect.
1: Given a system that produces a semi-linear set A ⊆ Nn (for instance, a
finite automaton or a pushdown system) and an acceptance constraint given by
a quadratic equation Q(x̄) = 0 for Q ∈ Z[X1, . . . , Xn] then it can be decided
whether some run of the automaton exists that satisfies the acceptance condition.

Next we introduce sets which refer to the value sets of quadratic forms Q(x̄)
rather than solutions of the equation Q(x̄) = 0. We call a set A ⊆ Nn one-
quadratic if A is a polynomial set such that the first component is given by a
quadratic form Q ∈ N[X1, . . . , Xm] and the other components by linear forms
L2, . . . , Ln ∈ N[X1, . . . , Xm]:

A = {(Q(k1, . . . , km), L2(k1, . . . , km), . . . , Ln(k1, . . . , km)) | k1, . . . , km ∈ N} .

A semi-one-quadratic set is a finite union of one-quadratic sets. The semi-one-
quadratic sets encompass the semi-linear ones.

Deciding the nonemptiness of the intersection of one-quadratic sets leads to
solving an equation system of the form (12): Given one-quadratic subsets A
and B that are defined by Q, L2, . . . , Ln ∈ N[X1, . . . , Xm] and Q′, L′2, . . . , L

′
n ∈

N[X1, . . . , Xr], respectively, we have that A∩B 6= ∅ iff there are k1, . . . , km and
k′1, . . . , k

′
r ∈ N such that Q(k1, . . . , km) = Q′(k′1, . . . , k

′
r) and Lj(k1, . . . , km) =

L′j(k
′
1, . . . , k

′
r), for j = 2, . . . , n. Now, we write the equations as Q−Q′ = 0 and

Lj − L′j = 0, and then replace Lj − L′j = 0 by Lj − L′j ≤ 0 and L′j − Lj ≤ 0.
Hence, Thm. 5 can be applied. For the step from one-quadratic sets to semi-one-
quadratic sets, we just use the distributivity of union over intersection.

Corollary 7. Nonemptiness of the intersection of two semi-one-quadratic sets
(and hence of a semi-one-quadratic with a semi-linear set) is decidable.

6 Conclusion

The results of this paper are a small step into a field which is not well explored
so far. We have suggested some classes of arithmetical constraints beyond the
framework of semi-linear sets where effective solutions are possible. The main
purpose of this note is to indicate some perspectives. Let us list some open
problems:

1. Study the closure properties of simple semi-polynomial and simple semi-
quadratic sets. In particular, does the intersection of a simple semi-polyno-
mial set with a semi-linear set yield again a simple semi-polynomial set?
What about the case of a semi-quadratic set?

2. The product relation of Example 2 shows a weakness of the simple semi-
polynomial sets. One observes, however, that 2mn = (m+n)2−m2−n2, for
any m,n ∈ N, and thus the product function is (up to a factor) the difference
of functions the graphs of which are simple quadratic. This suggests the study
of the closure of simple (semi-)quadratic sets under additive operations.
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3. Better upper bounds for deciding the membership in a simple semi-polyno-
mial set should be found.

4. A way of extending the simple semi-polynomial sets is to consider the Parikh
images of indexed languages. This would cover not only the product relation
but also exponential relations like {(n, 2n) | n ∈ N} (see [8]).

5. Start an algorithmic analysis of [5], and find forms of quadratic equations
where reasonable upper bounds for deciding solvability can be established.

6. Study the case of quadratic inequations rather than equations.
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