The Complexity of Reachability in
Randomized Sabotage Games*

Dominik Klein, Frank G. Radmacher, and Wolfgang Thomas

Lehrstuhl fir Informatik 7, RWTH Aachen University, Germany

dominik.klein@rwth-aachen.de
radmacher@automata.rwth-aachen.de
thomas@automata.rwth-aachen.de

Abstract. We analyze a model of fault-tolerant systems in a proba-
bilistic setting. The model has been introduced under the name of “sab-
otage games”. A reachability problem over graphs is considered, where
a “Runner” starts from a vertex u and seeks to reach some vertex in
a target set F' while, after each move, the adversary “Blocker” deletes
one edge. Extending work by Loding and Rohde (who showed PSPACE-
completeness of this reachability problem), we consider the randomized
case (a “game against nature”) in which the deleted edges are chosen
at random, each existing edge with the same probability. In this much
weaker model, we show that, for any probability p and £ > 0, the fol-
lowing problem is again PSPACE-complete: Given a game graph with u
and F and a probability p’ in the interval [p — e, p + €], is there a strat-
egy for Runner to reach F with probability > p’? Our result extends
the PSPACE-completeness of Papadimitriou’s “dynamic graph reliabil-
ity”; there, the probabilities of edge failures may depend both on the
edge and on the current position of Runner.

Key words: games, reachability, probabilistic systems, fault-tolerant
systems

1 Introduction

The subject of this paper is a model of fault-tolerant computation in which a
reachability objective over a network is confronted with the failure of connections
(edges). It is well known that adding dynamics to originally static models makes
their analysis much harder — in our case, these dynamics are generated by the
feature of vanishing edges in graphs. We build on hardness results of Loding and
Rohde that are explained in more detail below. In the present paper we combine
the aspect of dynamics with probability assumptions, which makes the model
“coarser” or “softer”. We show that, even in the probabilistic framework, the
hardness phenomena of the standard dynamic model are still valid. Technically

* This research was supported by the RWTH Aachen Research Cluster UMIC of the
German Excellence Initiative, German Research Foundation grant DFG EXC 89.

speaking, we show that the results of Loding and Rohde are preserved in the
more general randomized framework.

Specifically, we consider a two player game based on the model of (discrete)
“sabotage games” suggested by van Benthem (cf. [12]). These games are played
on graphs which edges may be multi-edges. A player, called “Runner”; moves
along edges and wants to reach a vertex in a set F' from a given initial vertex wu.
After each move of Runner, the adversary, called “Blocker”, may delete an edge;
and in this way Runner and Blocker move in alternation. The algorithmic prob-
lem of “solving this game” asks for a winning strategy for Runner that enables
him to reach a vertex in F' against any choice of Blocker in deleting edges. The
theory of these games was developed by Loding and Rohde; see [5,6,4,10,11].
Also, other winning conditions (more general than reachability) were consid-
ered; see [5,11,12].

In the present paper, we modify the sabotage games in a way that corre-
sponds to a more realistic modeling: The second player Blocker is replaced by
random fault. In each turn an edge (which may be a multi-edge) between two
nodes is hit — each existing (multi-) edge with the same probability — and its
multiplicity is reduced (resp. deleted in case of a single edge). So, in this ap-
proach, the player Runner is not faced with a Blocker, but rather has to play
against “nature” [7]. There are several scenarios that motivate this model, e.g.
the “Traveling Researcher Problem” as formulated by van Benthem [12], or the
analysis of routing problems in networks where routing is subject to change,
reacting to failures of connections. In such cases, it is rarely realistic to assume
that there is an omniscient adversary that manipulates the world. The faults
in natural scenarios are usually better modeled as random events. In our work,
we use the term “randomized sabotage game” to emphasize our starting point,
the sabotage games; but one might prefer to speak of reachability games against
nature.

Our studies extend previous results in two ways: On the one hand, this paper
extends the classical framework of sabotage games in which Léding and Rohde
showed the PSPACE-completeness of solving sabotage games with reachability
winning conditions [5]. The natural question arises whether this result can be
transferred when replacing the adversary player Blocker by arbitrary fault. On
the other hand, our work is closely related to a similar question which was studied
by Papadimitriou in his work on “games against nature” [7]. He considered the
problem of “dynamic graph reliability” (DGR), where each edge e fails with a
probability p(e, v) after each turn, i.e. the probability depends on both the edge e
and the current position v of Runner. Papadimitriou’s game model against nature
is rather strong, since for all edges the probabilities of deletion can be adjusted
after each turn; his proof for the PSpPACE-hardness of DGR heavily depends on
these adjustments. In fact, all problems that are considered in [7,8] as “games
against nature” allow a precise adjustment of the probability for arbitrary large
games, so that a reduction from the PSPACE-complete problem SSAT [7,3] is
possible (which is a stochastic version of SAT, with radmoized quantifiers instead
of universal quantifiers). However, it should be noted that randomized sabotage

games are not a special case of DGR, since, in randomized sabotage games,
exactly one edge is deleted in each turn. In this paper, we pursue the question
of whether Papadimitriou’s result can be extended to a game model with a
uniform probability distribution (e.g. in each turn, one of the n edges is deleted
with probability p = %)

Our main result says that, in randomized sabotage games with a uniform
distribution of failures where exactly one edge is deleted per turn, for any p €
[0,1] and € > 0 the following problem is PSPACE-complete: Given a game arena
with origin u, a distinguished set F', and a probability p’ in the interval [p —
g,p + €], does Runner have a strategy to reach F from u with probability > p'?

The remainder of this paper is structured as follows. In Section 2 we in-
troduce the basic notions of randomized sabotage games. Section 3 is con-
cerned with the PSPACE-hardness of the reachability version of randomized sab-
otage games. Here we start from the construction of Léding and Rohde [5] on
PSpAcE-hardness for the original sabotage game. For infinitely many probabili-
ties pg,n € [0, 1] we reduce the PSPACE-complete problem of Quantified Boolean
Formulae (QBF) (see [8], problem “QSAT”) to the question of whether, given
a randomized sabotage game with u and F', the goal set F' is reachable with
a probability of pg . In order to complete the proof of our main result, we
show in Section 4 that the set of the probabilities py , is dense in the inter-
val [0, 1], and that the parameters k and n can be computed efficiently such that
Prn € [p—¢€,p+€]. In Section 5 we address perspectives which are treated in
ongoing work.

2 The Randomized Sabotage Game

A sabotage game is played on a graph (V| E), where V is a set of vertices. The
vertices are connected by a set of edges, given by £ C V x V. We will assume
undirected graphs from now on, ie. (u,v) € E = (v,u) € E; however, the
ideas presented here also work for directed graphs in the same way. It should
also be noted that, while in the “classical” notion of sabotage games multi-edges
are allowed, we will restrict ourselves to single edges only. Clearly, the hardness
result presented here also holds for the case of multi-edges (and also, the problem
still belongs to PSPACE).

A randomized sabotage game is a tuple G = (G, vy) with a graph G = (V, Ejy,)
and the initial vertex v, € V. A position of the game is a tuple (v;, E;). The
initial position is (vin, Ein). In each turn of the game, the player — called Runner —
chooses an outgoing edge (v, v,+1) in vertex v, of position (v,, F,) and moves
to vertex v,y1. Then, a dice with |E,| sides is thrown and the chosen edge e is
removed from E,,. We define E,, 11 := E,, \ {e}. After this turn, the new position
of the game is (vp41, Eny1); we say that Runner has reached the vertex v,,41.

Clearly, since edges are only deleted and not added, each play and the number
of positions are finite. We only consider reachability as winning condition in this
paper: For a randomized sabotage game G = ((V, Ein), vin) with a set of final
vertices F C V|, Runner wins a play iff he reaches a final vertex v € F.

For the probabilistic analysis, we build up the game tree tg for any ran-
domized sabotage game G. It is convenient to introduce tree nodes also for the
intermediate positions that result from nature’s moves, i.e. from edge deletions
(in the following nature’s positions are marked with an overline). The root of
the game tree is (vin, Ein), where Runner starts to move. From a position (v, E)
with v ¢ F where Runner moves, the successor nodes are all positions (v/, E)
with (v,v") € E (a position (v, E), with v € F or (v,v") ¢ E for all v/, is a leaf).
Now, the successors of (v, F) are the positions (v’, E') where E’ results from FE
by an edge deletion.

To each node of Runner we associate the probability for Runner to win the
subgame starting in this node. This probability is computed inductively in the
obvious way, starting with 1 and 0 at a leaf (v, E') depending on whether v € F
or not. For an inner node s of Runner with successors s; of Nature, suppose
that s; has k successors s;1,..., s; (where again Runner moves) which have,
by induction, probabilities p;; for Runner to win. We associate to each s; the
probability p; := % > ; Dijs then we pick the maximal p; that occurs and associate
it to s (a node with this maximal probability will be chosen by Runner). We
say that Runner wins with probability p if the root of the game tree has a
probability p.

Let p be an arbitrary number in [0, 1]. The Problem Randomized Reachability
Game for probability p is the following;:

Given a randomized sabotage game G = ((V, Ein), vin) and a designated
set ' C V, does Runner win this game with probability > p?

Loding and Rohde have already shown that solving classical sabotage games
with reachability winning condition is PSPACE-complete [5]. So, the randomized
sabotage game problem for probability p = 1 is PSPACE-hard. On the other
hand, the problem of whether Runner wins a randomized sabotage game with
a probability p > 0 is decidable in linear time, because Runner wins with a
probability > 0 iff there is a path from the initial to a final vertex.

Our main result says that the problem remains PSPACE-hard if we restrict
the probability to any interval: For any fixed p € [0, 1] and & > 0, the randomized
reachability game problem for a probability p’ which may vary in the interval
[p —e,p+ €] is PSPACE-complete. More precisely:

Theorem 2.1. For each fized p € [0,1] and € > 0, the following is PSPACE-
complete: Given a randomized sabotage game G with goal set F and a probability
p' € [p—e,p+e¢|, does Runner win G with probability > p'?

For the proof we use a parametrized reduction of the problem Quantified
Boolean Formulae (QBF): For each QBF-sentence ¢, we construct a family of
instances G, ,n and py ,, such that, for each £ and n, the sentence ¢ is true iff,
over G, .n With v and F', Runner wins with probability > py, ,,. Furthermore, we
guarantee that, given p, € > 0, the probability py , can be chosen in [p—e,p+¢]
for suitable k and n, and that this choice can be made in polynomial time. The
proof that the problem belongs to PSPACE is easy, using standard techniques

from the analysis of finite games. The idea is to generate the game tree in a
depth-first manner, with a storage for paths (and some auxiliary information);
see [2,8]. In the remainder we treat only the hardness proof. The next section
provides the indicated reduction, and in the subsequent section, we address the
question of the distribution and efficient computation of the probabilities py ;.

3 PSPACE-Hardness of the Reachability Game

In order to prove the PSPACE-hardness, we use a parametrized reduction from
the problem Quantified Boolean Formulae (QBF'), which is known to be PSPACE-
complete (cf. [8], problem “QSAT”). The reduction uses parts of the construction
of Loding and Rohde [5]. The basic strategy is to construct an arena in such a
way that, in a first part of the game, Runner can select the assignments for
existential quantified variables of the formula, and that he is forced to choose
certain assignments for the universal quantified variables. Then, this assignment
is verified in a second part.

Formally, an instance of the problem QBF is a special quantified boolean
formula, more precisely: Given a boolean expression © in conjunctive normal
form over boolean variables 1, ..., Ty, is dz1Vrs ... Qpnx,, Y true? Without loss
of generality, one requires the formula to start with an existential quantifier. If m
is even, Q,, = V; otherwise @,, = 3. For each instance ¢ of QBF, we construct a
game arena G, 1, and a rational number py, ,, such that ¢ is true iff Runner has
a strategy to reach a final vertex in G, i, exactly with probability py ,,. Thereby
the parameter k is an arbitrary natural number > 2, and the parameter n € N
essentially has to be greater than the size of ¢, i.e. n > ¢-|p| for some constant c.
If Runner plays suboptimally or if the formula is false, the maximum probability
of winning is strictly lower than py ,,; so the reduction meets the formulation of
our game problem.

The arena consists of four types of subparts or “gadgets”: The parametriza-
tion, existential, universal, and verification gadgets. In the parametrization gad-
get, one can, by adding or removing edges, adjust the probability py ..

The outline of the proof is the following: We first introduce a construction
to simulate a kind of multi-edge; this is convenient for a feasible analysis of
the probabilistic outcome in a framework where only single edges are allowed.
Then, we briefly recall the construction for the existential, universal, and verifi-
cation gadgets [5], and adapt the argument to meet our model of a play against
nature. In a second step, we introduce the parametrization gadget to adjust
the probability py ,. Finally, we use this construction to prove our main result
(Theorem 2.1).

3.1 The l-Edge Construction

In the following proofs, it will be necessary to link two vertices u and v in such
a way that the connection is rather strong, i.e. there needs to be a number of
several subsequent deletions until Runner is no longer able to move from u to v or

vice versa. This is achieved by the construction shown in Figure 1, which we will
call an “l-edge” from now on (I > 1). The circled vertex is a goal belonging to the
set F of final vertices. Here, if after |I| deletions all the |I| edges between u and
the middle vertices are deleted, Runner is disconnected from v. If |l — 1| or less
edges have been deleted anywhere in the game graph, there is at least one path
from u over some middle vertex to v and an edge between that middle vertex
and the final vertex. Then, Runner can move from u (resp. v) to that middle
vertex and is able to reach v (resp. u) in the next step, or he wins immediately
by moving to the (circled) final vertex.

Fig. 1. An l-edge from u to v.

Lemma 3.1. Given a randomized sabotage game with an l-edge between two
nodes u and v, Runner can guarantee to reach v via this l-edge iff he can guar-
antee to reach u within | — 1 mowes.

For a sufficiently high [, depending on the structure of the game-arena, it
is clear that Runner cannot be hindered from winning by edge deletions in an
[-edge; such [-edges will be called “oco-edges” to indicate that destruction of the
connection can be considered impossible. (For classical sabotage games, [can be
bounded by the total number of vertices in the game arena, because if Runner has
a winning strategy in a classical sabotage game, he has also a winning strategy
without visiting any vertex twice [5]. For the constructions in this paper where
oo-edges are used, it will be sufficient to consider oo-edges as 4-edges.)

Remark 3.2. In order to sharpen the hardness result of this paper to randomized
sabotage games with a unique goal, one may intend to merge final vertices to
one vertex. But this is not always possible: Consider an [-edge to a final vertex v.
Since we do not consider graphs with multi-edges, v cannot be merged with the
other final vertex from the l-edge construction without breaking Lemma 3.1.
For this reason, in this paper, PSPACE-hardness is shown only for randomized
sabotage games with at least two final vertices.

3.2 Existential, Universal, and Verification Gadgets

In this section, we briefly recall constructions from [5] to have a self-contained
exposition. We introduce the existential and universal gadgets (applied according
to the quantifier structure of the given formula), and the verification gadget
(corresponding to its quantifier-free kernel).

oo

...... > T b ﬂ(e X4 b E(
back . back back . back
Jout \:,out
Fig. 2. The 3-gadget for x; with ¢ odd. Fig. 3. The V-gadget for x; with ¢ even.

The Existential Gadget: Intuitively, the existential component allows Runner
to set an existential-quantified variable to true or false. The gadget is depicted
in Figure 2. The node a is the input vertex for this gadget, and x; (resp. T;) is
the variable vertex of this component which Runner intends to visit if he sets xz;
to false (resp. true). The vertex b is the exit node of this gadget; it coincides
with the in-vertex of the next gadget (i.e. the universal gadget for ;1 1, or the
verification gadget if x; is the last quantified variable). The “back”-edges from x;
and 7; lead directly to the last gadget of the construction, the verification gadget.
Later, Runner possibly move back via these edges to verify his assignment of the
variable z;. (We will see later that taking these edges as a shortcut, starting from
the existential gadget, directly to the verification gadget, is useless for Runner.)

Of course, Runner has a very high probability of winning the game within
the existential gadget (especially in an l-edge construction for an co-edge). But
we are only interested in the worst-case scenario, where edges are deleted in the
following precise manner:

When it is Runner’s turn and he is currently residing in vertex a, he will
move either left or right and can reach z; (resp. T;) in four turns. When Runner
moves towards x; (resp. T;), the 4-edge from z; (resp. Z;) to the final vertex may
be subsequently subject to deletion so that Runner ends up at node x; (resp. ;)
with no connection to the final vertex left. If Runner then moves towards T;
(resp. ;) and the edge between b and Z; (resp. z;) is deleted, he is forced to exit
the gadget via b and move onwards. The 4-edge from Z; (resp. x;) to the final
vertex remains untouched so far. If Runner is later forced to move back to z;
or T; from the verification gadget, he can only guarantee a win in one of these
vertices.

The Universal Gadget: In the universal component a truth value for the
all-quantified variables is chosen arbitrarily, but this choice can be considered to

Runner’s disadvantage in the worst-case. Runner can be forced to move in one or
the other direction and has to set x; to true or false, respectively. The gadget is
depicted in Figure 3. A path through this gadget starts in node a and is intended
to exit via node b, which coincides with the in-vertex of the next gadget (i.e. the
existential gadget for x;11, or the verification gadget if z; is the last quantified
variable). Again, only the worst cases are important for now; Runner is able to
win the game immediately in all other cases. Clearly, Runner is going to move in
the direction of vertex s. There are two interesting scenarios which may happen
with a probability > 0:

In the first scenario, the 3-edge to T; is deleted completely. Then, Runner can
only guarantee to leave the gadget at b via x; (but no visit of Z; or the (circled)
final vertex), because the 4-edge from x; to the final vertex and the 1-edge to T;
may be deleted successively. In this case, the 4-edge between T; and the final
vertex remains untouched.

In the second case, only the 4-edge from T; to the final vertex is subject to
deletion. At s, Runner is intended to move downward to Z; and leave the gadget
at b. Thereby the 4-edge between T; and the final vertex (which was already
reduced to a 1-edge) is deleted completely, and after this, the 1-edge to z; is
deleted. Consequently, the 4-edge from x; to the final vertex is untouched. If
Runner “misbehaves” in the sense that he moves from s to the left, it may
happen that the final vertex becomes completely disconnected from both z;
and Z;; in this case, Runner cannot win in this vertex if he is forced to move
back to x; or Z; from the verification gadget.

The Verification Gadget: The verification gadget is constructed in such a
way that, when Runner arrives here, he can only force a win if the assignment
for the variables which has been chosen beforehand satisfies the quantifier-free
kernel of the formula.

Fig. 4. The verification gadget for a formula with k clauses.

The verification gadget for a QBF-formula with k& clauses C,...,C} is de-
picted in Figure 4. Its in-vertex coincides with exit vertex b of the last existen-
tial/universal gadget. For a clause C; = (=)x;, V (7)x4, V (7)z4,, there are three
paths, each from ¢; via a single edge and an oo-edge (the literal edge L;;) back
to the variable vertex z;, in the corresponding gadgets. Again, a look at the
interesting scenarios is important:

Assume that Runner has chosen the appropriate assignments of the variables
for a satisfiable formula. He reaches the first selection vertex s; via the oo-
edge from the last existential/universal gadget. If Runner is in s; and the edge
to ¢; is deleted, he has to proceed to s;41. Now, assume that the edge between s;
and s;41 is removed. Then, Runner is forced to move towards ¢;. If the quantifier-
free kernel of the QBF-formula is satisfied with the chosen assignment of Runner,
then there is at least one literal that satisfies the clause C;. Runner chooses to
move alongside the corresponding literal edge L;; back to x;;, into the gadget
where he has chosen the assignment (and wins there by moving to the final
vertex). In any other case Runner is able to win immediately by moving via s
or via s;, ¢; to the (circled) final vertex. Note that he only has a chance of always
winning if his chosen assignment actually fulfills the quantifier-free kernel of the
formula.

If he did not choose a correct assignment or if the formula is not satisfiable,
there is at least one clause that falsifies the QBF-formula, say clause ¢;. If he is
forced to go to ¢;, there may be no path that leads him back to the final vertex
of an existential /universal gadget.

As a side remark, one should note that it is never optimal for Runner to
take a “back”-edge (i.e. a literal edge L;;) as a shortcut, moving directly from
some z; (resp. T;) of an existential/universal gadget to the verification gadget.
In this case, the 1-edge connecting ¢; and the co-edge from z; (resp. Z;) to the
verification gadget may be destroyed. Then, Runner has to move back and loses
his chance of always winning the game.

We introduced so far the construction from [5] which suffices to show PSPACE-
hardness for p = 1: Using the gadgets above, Runner does have a winning strat-
egy iff the given formula is true. For a QBF-formula ¢, we call the game arena
of this construction G,.

3.3 The Parametrization Gadget

The parametrization gadget is the initial part of the game arena that is con-
structed; it is used to “adjust” the overall winning probability of Runner. Run-
ner starts from the initial vertex in this gadget. For each k& > 1, we define the
parametrization gadget Hy; it is depicted in Figure 5.

We reduce the question of whether the QBF-formula ¢ is true to the reacha-
bility problem over certain game arenas that result from combining H;, with G,
as a graph Hj, o G,: The out-vertex b in Hy, is identified with the in-vertex a of
the first existential gadget of G,. Assume G, has ng edges. We get modifications
of G, with any number n > ng of edges by adding artificial extra edges (without
changing the behavior in the discussed worst case); for instance, this can be

k + 1 vertices

start
- [®e— -+ — 0 ——}

AN

vertices

Fig. 5. The parametrization gadget Hy.

out
Y
°

achieved by adding a path with a dead end. We call this game arena G;. In the
sequel, we work with

ggo,k,n =Hpo gz .

Since Hj, has 4k edges, the overall number of edges in our game arena G i is
4k 4+ n. Let

Dk,n = probability for Runner to traverse the

parametrization gadget Hy of Gy .pn -

Lemma 3.3. Runner wins the randomized reachability game over G, 1., for
probability py . iff the QBF-formula ¢ is true.

Proof. First note the following: If Runner resides at vertex b, and in Hj, exactly
the k edges below vertex b have been deleted so far, then Runner wins with
probability 1 iff ¢ is true (this follows immediately from the classical construction
by Léding and Rohde [5]).

Now assume that ¢ is true. In the parametrization gadget Runner starts at
node a and obviously moves towards b. Clearly, if any edge between his current
position and b is deleted, he loses the game immediately. However, if he succeeds
in getting to b, he will always win the game: First, assume the case that, in his k&
steps towards b, only edges in Hj, were subject to deletion. Then, Runner always
wins by moving in the first existential gadget and traversing G2, as mentioned
before. If we assume the other case that at least one of the k deletions took place
outside of Hy, there is at least one edge leading from b downward to some middle
node, say b, and there are at least two edges leading from b’ to the two final
vertices in the parametrization gadget. Then, Runner wins by moving from b
downward to b and then, depending on the next deletion, by moving to one
of the two final vertices. In both cases, Runner wins over G, 1, exactly with
the probability py , of traversing the parametrization gadget Hy, from node a to
node b.

Now, assume that ¢ is false, and that only the k edges below vertex b in Hy
are subject to deletion while Runner moves towards b (this may happen with a
probability > 0). Then, Runner’s only chance to win from b is by moving towards

10

some final vertex in G7. Since ¢ is false, his winning probability in b is strictly
smaller than 1, and hence his overall winning probability for G, 1 is strictly
smaller than py ,. O

The computation of the probabilities py , only depends on the parametriza-
tion gadget Hj and n: Clearly p;, = 1. For k > 2, the winning probability is
obtained from the probability of not failing in the first step, multiplied by the
probability of not failing in the second step, etc., until the probability of not
failing in the (k — 2)-th step, where Runner tries to get to b within one step.
After the first step, Runner has still to cross k — 1 edges; neither of them may
be deleted. Overall, there are 4k + n edges, so Runner does not lose if any of the
other 4k +n — (k — 1) edges is deleted. In the last step before reaching b, k — 2
edges have been deleted, so 4k + n — (k — 2) edges are left in the game. If any
other than the edge between Runner’s current position and b is deleted, Runner
is able to reach b. Generally, in the i-th step there are 4k + n — (i — 1) edges
left; and in order for Runner to still be able to reach b, one of the 3k +n + 1
edges that are not between Runner’s current position and b has to be deleted.
Altogether,

3kt Bk+n+1
Pen =" dktn—(k—2) 11

3k+n+1
dk+n—1i

i=0

We can summarize these observations in the following theorem:

Theorem 3.4. Given a QBF-formula ¢ so that G, has ng edges, for all k,n €
N with k > 2 and n > ng the following holds: Runner wins the randomized

reachability game over G 1., for probability py., = Hf:_og i’;ffii iff the QBF-
formula @ is true.

In order to use this theorem for a reduction to the randomized sabotage game,
we need to show that the game arena can be constructed in polynomial time. In
the following Lemma, we show that the size of the constructed game G, 1, is
linear in the size of the inputs ¢, k, and n:

Lemma 3.5. The size of G, is linear in ||, and the size of Hy, is linear in k.

Proof. For the first part, it is sufficient to realize that the size of each gadget
can be bounded by a constant. Since the number of gadgets is linear in the size
of ¢, the number of vertices and edges of G, is linear in |¢|. The only problem
might be the co-edges; but by detailed observation, we see that each co-edge can
be replaced by a 4-edge, and the construction still works in the same way.

For the second part, it suffices to note that Hy has 2k + 3 vertices and 4k
edges. a

Now, a preliminary result can be formulated in the following form:

Corollary 3.6. For all k > 2, the following problem is PSPACE-hard: Given
a randomized sabotage game with n edges, does Runner win with a probability
> DPk.n ?

11

3.4 Towards the PSPACE-Hardness for Arbitrary Probabilities

We already have a reduction of QBF to randomized sabotage games with a
varying probability p, (which depends on the given game graph). By a closer
look at the term pj , we see that the probability pj ., can be adjusted arbi-
trary close to 0 and arbitrary close to 1; more precisely: For a fixed k, we have
lim,,_,o0 pi,n = 1; and for a fixed n, we have limy_,o pi,n = 0. We will show a
stronger result, namely that the probabilities py, ,, form a dense set in the interval
[0,1], and that k£ and n can be computed efficiently such that py, is in a given
interval. More precisely, we shall show the following:

Theorem 3.7. The set of probabilities {pxn | k,n € N, k > 2} is dense in
the interval [0,1]. Moreover, given ng € N, p € [0,1], and an € > 0, there exist
k,n e N with k> 2 and n > ng such that py,, € [p — €, p + ¢€]; the computation
of such k, n, and px n is polynomial in the numerical values of no, %, and %

The proof of this theorem is the subject of Section 4.

Note that Theorem 3.7 provides a pseudo-polynomial algorithm, since the
computation is only polynomial in the numerical values of ng, %, and % (and not
in their lengths, which are logarithmic in the numerical values). For our needs
— i.e. a polynomial time reduction to prove Theorem 2.1 — this is no restriction:
The parameter ng corresponds to the number of edges in the input game (which
has already a polynomial representation), and p and e are fixed values (i.e.
formally they do not belong to the problem instance).

Now, we prove our main result:

Proof (of Theorem 2.1). For arbitrary p and €, we give a reduction from QBF to
the randomized sabotage game problem where only probabilities in the interval
[p—e, p+e] are allowed. Note that p and £ do not belong to the problem instance;
so they are considered constant in the following.

Given a QBF-formula ¢, we need to compute a game G, 1, and a pg, €
[p—e,p+ €] such that Runner wins G, ., with a probability > py, , iff ¢ is true.
Given ¢, we first apply the construction of Section 3.2 to construct an equivalent
sabotage game G,. Let ng be the number of edges of G, which is linear in the
size of ¢ according to Lemma 3.5. Then, we can compute k > 2, n > ng, and pg p
according to Theorem 3.7. For a fixed ¢, the computations are polynomial in ny
and hence polynomial in |¢|. Now, we extend G, to an equivalent sabotage
game with n edges, denoted G7. This can be achieved by adding n —ny dummy-
edges (e.g. we can add a path with a dead end). Thereafter, we construct the
randomized sabotage game G, i, by combining the parametrization gadget Hy
with the game arena G7.

The claimed equivalence of ¢ to the stated randomized reachability game
problem for probability py, holds due to Theorem 3.4. The requirement that
Dk, is in the interval [p — e, p + €] follows from Theorem 3.7. ad

12

4 On the Distribution and Computation of the
Probabilities py,

This section deals with the proof of Theorem 3.7: Given ng € N, p € [0, 1], and
an € > 0, we can construct £ > 2 and n > ng in polynomial time with respect to
the numerical values of ng, %, and é, such that py ,, is in the interval [p—e, p+e].

The idea is to first adjust the probability py , arbitrary close to 1, and then
go with steps of length below any given € > 0 arbitrary close to 0; so, we hit
every e-neighborhood in the interval [0, 1].

In order to adjust the probability py , arbitrary close to 1, we first choose
k = 2 and a sufficiently high n > ng. (We can artificially increase n by adding a
path with a dead end.) We will show that it suffices to choose n := max{nq, [1]}.
For this choice we obtain ps, > 1 —¢ (> p —¢). Then, we decrease the proba-
bility by stepwise incrementing k by 1 (changing Hj to Hii1 and keeping n
constant). It will turn out that (with the choice of n as above) the probability
decreases by a value that is lower than m (< g). Tterating this, the values
converge to 0, and we hit the interval [p— ¢, p+¢]. Hence, the set of probabilities
{pin | k,n € N, k> 2} is dense in the interval [0, 1]. Furthermore, we will show
that it will be sufficient to increase k at most up to 8n. For this choice, we obtain
pen < (<pte).

For the complexity analysis, note the following: After each step, the algorithm
has to check efficiently whether py, € [p — &,p + €]. The computation of the
term pg, is pseudo-polynomial in k, n, and the test for py, < p + ¢ is in
addition polynomial in % and % Since k and n are pseudo-linear in ng and é,
the whole procedure is pseudo-polynomial in ny, %, and %

Four claims remain to be proved:

— The adjustment of py , arbitrary close to 1 with the proposed choice of n,
i.e. given € > 0, for n > % holds p2,, > 1 — €.

— The adjustment of py ,, arbitrary close to 0 with the proposed choice of k,
i.e. given € > 0 and n > %, for k > 8n holds py, < e.

— The estimation py p, — Prt1,n < m.

— The test for pyn, € [p — €, p + €] is pseudo-polynomial in k, n, % and %

These claims are shown in the rest of this section:
Lemma 4.1. Given € > 0, forn > [é] we have pa, > 1 —¢.

Proof. Since n > fﬂ > % > % — 8 for € > 0, the result follows from

EN

n +
n+

1
Do = 21—€<:>n2g—8.

oo

O

Lemma 4.2. Given € > 0 andn € N with n > % and n > 4, for k > 8n we
have pyn < €.

13

Proof. First note that we have at least n > 1 and k£ > 8. Then
k—2 k k k
3k+n+1 (3k+n+1>2 (4k+1)2 <4.125k:)2
Pk = - < < <
’ Pl 4k +n —1 3.5k +n 4.5k 4.5k

E E 4n
_(HRNE O (ILNE (LN
“\12k) T\ 12) =\12 -

4

The inequality (% " < & remains to be shown. Since % < g, it is sufficient to

)
show that (%)M < %:
12

1\ 1 12
i = = — = i < i — .
(12) <n T Vnt <Vt <

1 1
The inequality /n* < V2% is equivalent to n2 < 2" and holds for alln > 4. O
Lemma 4.3. For k,n € N with k > 2, we have pgn — Pr+1,n < m.

Proof. In this proof we use the substitution m := 4k +n + 4.

- 7k723k+n+17kl:[1 Bk +n+4
Pkn — Pk+1,n = 1

i:O4k+n—i k+n+4—i
k*23k+n+4+17’“*1 3k+n+4 7161—[m k+17kl—[1m k
Toitdktntd—i Sudkdntd—i m—i
_Hm k—i—l_li—f (m—k+ 1 — (m—k)F!
m=1 Hf_olm_Z

Now we can use the equation a'! —b' = (a—b)(a! "1 +a'=2b+---+ab! =2+ b~ 1) for
the estimation (d+1)¥"1—d*=1 = (d+1)* 24 (d+1)*3d+- - -+ (d+1)d*34-dF2
< (k—1)(d +1)¥=2. We obtain px, — prt+1n

_k=Dm -kt k-1]ﬁ(mfk+1)< k-1
- | m(m—1) -1 m—i T mm-1)
Since m > k for all k,n € N, Weobtainpkmfpk+17n<%:m. O

Lemma 4.4. The computation of the term py, », is pseudo-polynomial in k and n.
The test for pin < p+ € is pseudo-polynomial in k and n, and polynomial in %
and %

Proof. First, we rewrite py_,, in the form

Bk +n+ 1)kt
[y ak+n—i

14

Now, we compute the numerator and the denominator separately. For the compu-
tation, we can switch to binary encoding. Each multiplication can be performed
in polynomial time in the length of its binary encoding [13]. We need k — 2
multiplications (for this reason, the algorithm is only pseudo-polynomial). The
division and comparison of two rational numbers can be done in polynomial
time with respect to the length of their binary representations [13]. So, the quo-
tient py.,, can be computed in pseudo-polynomial time with respect to £ and n,
and the test to check whether py , < p+ ¢ is in addition polynomial in % and %

O

5 Perspectives

We have introduced randomized sabotage games, and showed that the reacha-
bility problem for a probability which may vary in a fixed interval [p—e, p+e¢] is
PSpACE-complete. This is a small contribution to the emerging research on the
analysis of dynamical networks with aspects of randomness. As concrete open
issues, we mention the following problems:

1. In our proof, it seems difficult to adjust the probability ezactly to a given
probability p (in our formulation this is the case ¢ = 0). It remains open
whether this can be achieved by a refinement of the construction.

2. In our proof, we used the reachability problem with a target set F' containing
at least two vertices (see Remark 3.2). One task is to extend the result
to cover also the case of a singleton as target set (note that in the non-
randomized case, the singleton reachability problem is PSPACE-hard only if
one allows multi-edges [5]).

3. The proof of our model depends on the restriction that exactly one edge
per turn is deleted (rather than possibly multiple edge deletion occurring
subject to given probabilities). Sharpening the mentioned problem of “dy-
namic graph reliability” [7] to probabilities that are independent of Runner’s
position, we can study the model where in every turn each edge fails with a
probability p(e), or even with probability < in the uniform case.

4. Extending the model with a mechanism of restoration is a challenging task
(for instance, reactive Kripke models [1] and backup parity games [11] ad-
dress this issue). In [9] we developed a theory of dynamic networks where
Runner and Blocker are replaced by two players, Constructor and Destruc-
tor, that add resp. delete vertices/edges, and the problem of guaranteeing
certain network properties (like connectivity) is addressed. We are presently
integrating probabilistic features into this model, starting from the present
paper. Another interesting direction of research is to include more general
winning conditions in appropriate logics [2].

Acknowledgments. We thank Yf.ukasz Kaiser for his help regarding Lemma 4.3.
We also thank the anonymous referees for their valuable comments and sugges-
tions in improving this paper.

15

References

10.

11.

12.

13.

. Dov M. Gabbay. Introducing reactive Kripke semantics and arc accessibility. In

Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the
Occasion of His 85th Birthday, volume 4800 of Lecture Notes in Computer Science,
pages 292—-341. Springer, 2008.

Dominik Klein. Solving Randomized Sabotage Games for Navigation in Networks.
Diploma thesis, RWTH Aachen, 2008.

Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic boolean
satisfiability. Journal of Automated Reasoning, 27(3):251-296, 2001.

Christof Léding and Philipp Rohde. Model checking and satisfiability for sabotage
modal logic. In Proceedings of FSTTCS, volume 2914 of Lecture Notes in Computer
Science, pages 302-313. Springer, 2003.

Christof Loding and Philipp Rohde. Solving the sabotage game is PSPACE-hard.
Technical Report AIB-05-2003, RWTH Aachen, 2003.

Christof Loding and Philipp Rohde. Solving the sabotage game is PSPACE-hard.
In Proceedings of MFCS, volume 2747 of Lecture Notes in Computer Science, pages
531-540. Springer, 2003.

Christos H. Papadimitriou. Games against nature. Journal of Computer and
System Sciences, 31(2):288-301, 1985.

Christos H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.
Frank G. Radmacher and Wolfgang Thomas. A game theoretic approach to the
analysis of dynamic networks. In Proceedings of VerAS, volume 200 (2) of Electronic
Notes in Theoretical Computer Science, pages 21-37. Elsevier, 2008.

Philipp Rohde. Moving in a crumbling network: The balanced case. In Proceed-
ings of CSL, volume 3210 of Lecture Notes in Computer Science, pages 310-324.
Springer, 2004.

Philipp Rohde. On Games and Logics over Dynamically Changing Structures. PhD
thesis, RWTH Aachen, 2005.

Johan van Benthem. An essay on sabotage and obstruction. In Mechanizing
Mathematical Reasoning, Fssays in Honor of Jorg H. Siekmann on the Occasion
of His 60th Birthday, volume 2605 of Lecture Notes in Computer Science, pages
268—-276. Springer, 2005.

Joachim von zur Gathen and Jirgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, Cambridge, UK, second edition, 2003.

16

