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Abstract. We analyze a model of fault-tolerant systems in a proba-
bilistic setting. The model has been introduced under the name of “sab-
otage games”. A reachability problem over graphs is considered, where
a “Runner” starts from a vertex u and seeks to reach some vertex in
a target set F while, after each move, the adversary “Blocker” deletes
one edge. Extending work by Löding and Rohde (who showed PSpace-
completeness of this reachability problem), we consider the randomized
case (a “game against nature”) in which the deleted edges are chosen
at random, each existing edge with the same probability. In this much
weaker model, we show that, for any probability p and ε > 0, the fol-
lowing problem is again PSpace-complete: Given a game graph with u
and F and a probability p′ in the interval [p− ε, p+ ε], is there a strat-
egy for Runner to reach F with probability ≥ p′? Our result extends
the PSpace-completeness of Papadimitriou’s “dynamic graph reliabil-
ity”; there, the probabilities of edge failures may depend both on the
edge and on the current position of Runner.

Key words: games, reachability, probabilistic systems, fault-tolerant
systems

1 Introduction

The subject of this paper is a model of fault-tolerant computation in which a
reachability objective over a network is confronted with the failure of connections
(edges). It is well known that adding dynamics to originally static models makes
their analysis much harder – in our case, these dynamics are generated by the
feature of vanishing edges in graphs. We build on hardness results of Löding and
Rohde that are explained in more detail below. In the present paper we combine
the aspect of dynamics with probability assumptions, which makes the model
“coarser” or “softer”. We show that, even in the probabilistic framework, the
hardness phenomena of the standard dynamic model are still valid. Technically
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speaking, we show that the results of Löding and Rohde are preserved in the
more general randomized framework.

Specifically, we consider a two player game based on the model of (discrete)
“sabotage games” suggested by van Benthem (cf. [12]). These games are played
on graphs which edges may be multi-edges. A player, called “Runner”, moves
along edges and wants to reach a vertex in a set F from a given initial vertex u.
After each move of Runner, the adversary, called “Blocker”, may delete an edge;
and in this way Runner and Blocker move in alternation. The algorithmic prob-
lem of “solving this game” asks for a winning strategy for Runner that enables
him to reach a vertex in F against any choice of Blocker in deleting edges. The
theory of these games was developed by Löding and Rohde; see [5,6,4,10,11].
Also, other winning conditions (more general than reachability) were consid-
ered; see [5,11,12].

In the present paper, we modify the sabotage games in a way that corre-
sponds to a more realistic modeling: The second player Blocker is replaced by
random fault. In each turn an edge (which may be a multi-edge) between two
nodes is hit – each existing (multi-) edge with the same probability – and its
multiplicity is reduced (resp. deleted in case of a single edge). So, in this ap-
proach, the player Runner is not faced with a Blocker, but rather has to play
against “nature” [7]. There are several scenarios that motivate this model, e.g.
the “Traveling Researcher Problem” as formulated by van Benthem [12], or the
analysis of routing problems in networks where routing is subject to change,
reacting to failures of connections. In such cases, it is rarely realistic to assume
that there is an omniscient adversary that manipulates the world. The faults
in natural scenarios are usually better modeled as random events. In our work,
we use the term “randomized sabotage game” to emphasize our starting point,
the sabotage games; but one might prefer to speak of reachability games against
nature.

Our studies extend previous results in two ways: On the one hand, this paper
extends the classical framework of sabotage games in which Löding and Rohde
showed the PSpace-completeness of solving sabotage games with reachability
winning conditions [5]. The natural question arises whether this result can be
transferred when replacing the adversary player Blocker by arbitrary fault. On
the other hand, our work is closely related to a similar question which was studied
by Papadimitriou in his work on “games against nature” [7]. He considered the
problem of “dynamic graph reliability” (DGR), where each edge e fails with a
probability p(e, v) after each turn, i.e. the probability depends on both the edge e
and the current position v of Runner. Papadimitriou’s game model against nature
is rather strong, since for all edges the probabilities of deletion can be adjusted
after each turn; his proof for the PSpace-hardness of DGR heavily depends on
these adjustments. In fact, all problems that are considered in [7,8] as “games
against nature” allow a precise adjustment of the probability for arbitrary large
games, so that a reduction from the PSpace-complete problem SSAT [7,3] is
possible (which is a stochastic version of SAT, with radmoized quantifiers instead
of universal quantifiers). However, it should be noted that randomized sabotage
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games are not a special case of DGR, since, in randomized sabotage games,
exactly one edge is deleted in each turn. In this paper, we pursue the question
of whether Papadimitriou’s result can be extended to a game model with a
uniform probability distribution (e.g. in each turn, one of the n edges is deleted
with probability p = 1

n ).
Our main result says that, in randomized sabotage games with a uniform

distribution of failures where exactly one edge is deleted per turn, for any p ∈
[0, 1] and ε > 0 the following problem is PSpace-complete: Given a game arena
with origin u, a distinguished set F , and a probability p′ in the interval [p −
ε, p+ ε], does Runner have a strategy to reach F from u with probability ≥ p′?

The remainder of this paper is structured as follows. In Section 2 we in-
troduce the basic notions of randomized sabotage games. Section 3 is con-
cerned with the PSpace-hardness of the reachability version of randomized sab-
otage games. Here we start from the construction of Löding and Rohde [5] on
PSpace-hardness for the original sabotage game. For infinitely many probabili-
ties pk,n ∈ [0, 1] we reduce the PSpace-complete problem of Quantified Boolean
Formulae (QBF) (see [8], problem “QSAT”) to the question of whether, given
a randomized sabotage game with u and F , the goal set F is reachable with
a probability of pk,n. In order to complete the proof of our main result, we
show in Section 4 that the set of the probabilities pk,n is dense in the inter-
val [0, 1], and that the parameters k and n can be computed efficiently such that
pk,n ∈ [p − ε, p + ε]. In Section 5 we address perspectives which are treated in
ongoing work.

2 The Randomized Sabotage Game

A sabotage game is played on a graph (V,E), where V is a set of vertices. The
vertices are connected by a set of edges, given by E ⊆ V × V . We will assume
undirected graphs from now on, i.e. (u, v) ∈ E ⇒ (v, u) ∈ E; however, the
ideas presented here also work for directed graphs in the same way. It should
also be noted that, while in the “classical” notion of sabotage games multi-edges
are allowed, we will restrict ourselves to single edges only. Clearly, the hardness
result presented here also holds for the case of multi-edges (and also, the problem
still belongs to PSpace).

A randomized sabotage game is a tuple G = (G, vin) with a graph G = (V,Ein)
and the initial vertex vin ∈ V . A position of the game is a tuple (vi, Ei). The
initial position is (vin, Ein). In each turn of the game, the player – called Runner –
chooses an outgoing edge (vn, vn+1) in vertex vn of position (vn, En) and moves
to vertex vn+1. Then, a dice with |En| sides is thrown and the chosen edge e is
removed from En. We define En+1 := En \{e}. After this turn, the new position
of the game is (vn+1, En+1); we say that Runner has reached the vertex vn+1.

Clearly, since edges are only deleted and not added, each play and the number
of positions are finite. We only consider reachability as winning condition in this
paper: For a randomized sabotage game G = ((V,Ein), vin) with a set of final
vertices F ⊆ V , Runner wins a play iff he reaches a final vertex v ∈ F .
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For the probabilistic analysis, we build up the game tree tG for any ran-
domized sabotage game G. It is convenient to introduce tree nodes also for the
intermediate positions that result from nature’s moves, i.e. from edge deletions
(in the following nature’s positions are marked with an overline). The root of
the game tree is (vin, Ein), where Runner starts to move. From a position (v,E)
with v 6∈ F where Runner moves, the successor nodes are all positions (v′, E)
with (v, v′) ∈ E (a position (v,E), with v ∈ F or (v, v′) 6∈ E for all v′, is a leaf).
Now, the successors of (v′, E) are the positions (v′, E′) where E′ results from E
by an edge deletion.

To each node of Runner we associate the probability for Runner to win the
subgame starting in this node. This probability is computed inductively in the
obvious way, starting with 1 and 0 at a leaf (v,E) depending on whether v ∈ F
or not. For an inner node s of Runner with successors si of Nature, suppose
that si has k successors si1, . . . , sik (where again Runner moves) which have,
by induction, probabilities pij for Runner to win. We associate to each si the
probability pi := 1

k

∑
j pij ; then we pick the maximal pi that occurs and associate

it to s (a node with this maximal probability will be chosen by Runner). We
say that Runner wins with probability p if the root of the game tree has a
probability p.

Let p be an arbitrary number in [0, 1]. The Problem Randomized Reachability
Game for probability p is the following:

Given a randomized sabotage game G = ((V,Ein), vin) and a designated
set F ⊆ V , does Runner win this game with probability ≥ p?

Löding and Rohde have already shown that solving classical sabotage games
with reachability winning condition is PSpace-complete [5]. So, the randomized
sabotage game problem for probability p = 1 is PSpace-hard. On the other
hand, the problem of whether Runner wins a randomized sabotage game with
a probability p > 0 is decidable in linear time, because Runner wins with a
probability > 0 iff there is a path from the initial to a final vertex.

Our main result says that the problem remains PSpace-hard if we restrict
the probability to any interval: For any fixed p ∈ [0, 1] and ε > 0, the randomized
reachability game problem for a probability p′ which may vary in the interval
[p− ε, p+ ε] is PSpace-complete. More precisely:

Theorem 2.1. For each fixed p ∈ [0, 1] and ε > 0, the following is PSpace-
complete: Given a randomized sabotage game G with goal set F and a probability
p′ ∈ [p− ε, p+ ε], does Runner win G with probability ≥ p′?

For the proof we use a parametrized reduction of the problem Quantified
Boolean Formulae (QBF): For each QBF-sentence ϕ, we construct a family of
instances Gϕ,k,n and pk,n such that, for each k and n, the sentence ϕ is true iff,
over Gϕ,k,n with u and F , Runner wins with probability ≥ pk,n. Furthermore, we
guarantee that, given p, ε > 0, the probability pk,n can be chosen in [p− ε, p+ ε]
for suitable k and n, and that this choice can be made in polynomial time. The
proof that the problem belongs to PSpace is easy, using standard techniques
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from the analysis of finite games. The idea is to generate the game tree in a
depth-first manner, with a storage for paths (and some auxiliary information);
see [2,8]. In the remainder we treat only the hardness proof. The next section
provides the indicated reduction, and in the subsequent section, we address the
question of the distribution and efficient computation of the probabilities pk,n.

3 PSPACE-Hardness of the Reachability Game

In order to prove the PSpace-hardness, we use a parametrized reduction from
the problem Quantified Boolean Formulae (QBF), which is known to be PSpace-
complete (cf. [8], problem “QSAT”). The reduction uses parts of the construction
of Löding and Rohde [5]. The basic strategy is to construct an arena in such a
way that, in a first part of the game, Runner can select the assignments for
existential quantified variables of the formula, and that he is forced to choose
certain assignments for the universal quantified variables. Then, this assignment
is verified in a second part.

Formally, an instance of the problem QBF is a special quantified boolean
formula, more precisely: Given a boolean expression ϑ in conjunctive normal
form over boolean variables x1, . . . , xm, is ∃x1∀x2 . . . Qmxmϑ true? Without loss
of generality, one requires the formula to start with an existential quantifier. Ifm
is even, Qm = ∀; otherwise Qm = ∃. For each instance ϕ of QBF, we construct a
game arena Gϕ,k,n and a rational number pk,n such that ϕ is true iff Runner has
a strategy to reach a final vertex in Gϕ,k,n exactly with probability pk,n. Thereby
the parameter k is an arbitrary natural number ≥ 2, and the parameter n ∈ N
essentially has to be greater than the size of ϕ, i.e. n ≥ c · |ϕ| for some constant c.
If Runner plays suboptimally or if the formula is false, the maximum probability
of winning is strictly lower than pk,n; so the reduction meets the formulation of
our game problem.

The arena consists of four types of subparts or “gadgets”: The parametriza-
tion, existential, universal, and verification gadgets. In the parametrization gad-
get, one can, by adding or removing edges, adjust the probability pk,n.

The outline of the proof is the following: We first introduce a construction
to simulate a kind of multi-edge; this is convenient for a feasible analysis of
the probabilistic outcome in a framework where only single edges are allowed.
Then, we briefly recall the construction for the existential, universal, and verifi-
cation gadgets [5], and adapt the argument to meet our model of a play against
nature. In a second step, we introduce the parametrization gadget to adjust
the probability pk,n. Finally, we use this construction to prove our main result
(Theorem 2.1).

3.1 The l-Edge Construction

In the following proofs, it will be necessary to link two vertices u and v in such
a way that the connection is rather strong, i.e. there needs to be a number of
several subsequent deletions until Runner is no longer able to move from u to v or
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vice versa. This is achieved by the construction shown in Figure 1, which we will
call an “l-edge” from now on (l ≥ 1). The circled vertex is a goal belonging to the
set F of final vertices. Here, if after |l| deletions all the |l| edges between u and
the middle vertices are deleted, Runner is disconnected from v. If |l − 1| or less
edges have been deleted anywhere in the game graph, there is at least one path
from u over some middle vertex to v and an edge between that middle vertex
and the final vertex. Then, Runner can move from u (resp. v) to that middle
vertex and is able to reach v (resp. u) in the next step, or he wins immediately
by moving to the (circled) final vertex.

•
•

u v

•
•

•

· · ·
l vertices

Fig. 1. An l-edge from u to v.

Lemma 3.1. Given a randomized sabotage game with an l-edge between two
nodes u and v, Runner can guarantee to reach v via this l-edge iff he can guar-
antee to reach u within l − 1 moves.

For a sufficiently high l, depending on the structure of the game-arena, it
is clear that Runner cannot be hindered from winning by edge deletions in an
l-edge; such l-edges will be called “∞-edges” to indicate that destruction of the
connection can be considered impossible. (For classical sabotage games, l can be
bounded by the total number of vertices in the game arena, because if Runner has
a winning strategy in a classical sabotage game, he has also a winning strategy
without visiting any vertex twice [5]. For the constructions in this paper where
∞-edges are used, it will be sufficient to consider ∞-edges as 4-edges.)
Remark 3.2. In order to sharpen the hardness result of this paper to randomized
sabotage games with a unique goal, one may intend to merge final vertices to
one vertex. But this is not always possible: Consider an l-edge to a final vertex v.
Since we do not consider graphs with multi-edges, v cannot be merged with the
other final vertex from the l-edge construction without breaking Lemma 3.1.
For this reason, in this paper, PSpace-hardness is shown only for randomized
sabotage games with at least two final vertices.

3.2 Existential, Universal, and Verification Gadgets
In this section, we briefly recall constructions from [5] to have a self-contained
exposition. We introduce the existential and universal gadgets (applied according
to the quantifier structure of the given formula), and the verification gadget
(corresponding to its quantifier-free kernel).
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Fig. 2. The ∃-gadget for xi with i odd.
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Fig. 3. The ∀-gadget for xi with i even.

The Existential Gadget: Intuitively, the existential component allows Runner
to set an existential-quantified variable to true or false. The gadget is depicted
in Figure 2. The node a is the input vertex for this gadget, and xi (resp. xi) is
the variable vertex of this component which Runner intends to visit if he sets xi
to false (resp. true). The vertex b is the exit node of this gadget; it coincides
with the in-vertex of the next gadget (i.e. the universal gadget for xi+1, or the
verification gadget if xi is the last quantified variable). The “back”-edges from xi
and xi lead directly to the last gadget of the construction, the verification gadget.
Later, Runner possibly move back via these edges to verify his assignment of the
variable xi. (We will see later that taking these edges as a shortcut, starting from
the existential gadget, directly to the verification gadget, is useless for Runner.)

Of course, Runner has a very high probability of winning the game within
the existential gadget (especially in an l-edge construction for an ∞-edge). But
we are only interested in the worst-case scenario, where edges are deleted in the
following precise manner:

When it is Runner’s turn and he is currently residing in vertex a, he will
move either left or right and can reach xi (resp. xi) in four turns. When Runner
moves towards xi (resp. xi), the 4-edge from xi (resp. xi) to the final vertex may
be subsequently subject to deletion so that Runner ends up at node xi (resp. xi)
with no connection to the final vertex left. If Runner then moves towards xi
(resp. xi) and the edge between b and xi (resp. xi) is deleted, he is forced to exit
the gadget via b and move onwards. The 4-edge from xi (resp. xi) to the final
vertex remains untouched so far. If Runner is later forced to move back to xi
or xi from the verification gadget, he can only guarantee a win in one of these
vertices.

The Universal Gadget: In the universal component a truth value for the
all-quantified variables is chosen arbitrarily, but this choice can be considered to
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Runner’s disadvantage in the worst-case. Runner can be forced to move in one or
the other direction and has to set xi to true or false, respectively. The gadget is
depicted in Figure 3. A path through this gadget starts in node a and is intended
to exit via node b, which coincides with the in-vertex of the next gadget (i.e. the
existential gadget for xi+1, or the verification gadget if xi is the last quantified
variable). Again, only the worst cases are important for now; Runner is able to
win the game immediately in all other cases. Clearly, Runner is going to move in
the direction of vertex s. There are two interesting scenarios which may happen
with a probability > 0:

In the first scenario, the 3-edge to xi is deleted completely. Then, Runner can
only guarantee to leave the gadget at b via xi (but no visit of xi or the (circled)
final vertex), because the 4-edge from xi to the final vertex and the 1-edge to xi
may be deleted successively. In this case, the 4-edge between xi and the final
vertex remains untouched.

In the second case, only the 4-edge from xi to the final vertex is subject to
deletion. At s, Runner is intended to move downward to xi and leave the gadget
at b. Thereby the 4-edge between xi and the final vertex (which was already
reduced to a 1-edge) is deleted completely, and after this, the 1-edge to xi is
deleted. Consequently, the 4-edge from xi to the final vertex is untouched. If
Runner “misbehaves” in the sense that he moves from s to the left, it may
happen that the final vertex becomes completely disconnected from both xi
and xi; in this case, Runner cannot win in this vertex if he is forced to move
back to xi or xi from the verification gadget.

The Verification Gadget: The verification gadget is constructed in such a
way that, when Runner arrives here, he can only force a win if the assignment
for the variables which has been chosen beforehand satisfies the quantifier-free
kernel of the formula.

•

s1

c1 •

•• •

s2

c2 •

•• •

s3

c3 •

•• •

sk

ck •

•• •

•· · ·

in

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

1
1

1 1 1

1

1
1

1 1 1

1

1
1

1 1 1

1
1

1 1 1

1

Fig. 4. The verification gadget for a formula with k clauses.
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The verification gadget for a QBF-formula with k clauses C1, . . . , Ck is de-
picted in Figure 4. Its in-vertex coincides with exit vertex b of the last existen-
tial/universal gadget. For a clause Ci = (¬)xi1 ∨ (¬)xi2 ∨ (¬)xi3 , there are three
paths, each from ci via a single edge and an ∞-edge (the literal edge Lij) back
to the variable vertex xij in the corresponding gadgets. Again, a look at the
interesting scenarios is important:

Assume that Runner has chosen the appropriate assignments of the variables
for a satisfiable formula. He reaches the first selection vertex s1 via the ∞-
edge from the last existential/universal gadget. If Runner is in si and the edge
to ci is deleted, he has to proceed to si+1. Now, assume that the edge between si
and si+1 is removed. Then, Runner is forced to move towards ci. If the quantifier-
free kernel of the QBF-formula is satisfied with the chosen assignment of Runner,
then there is at least one literal that satisfies the clause Ci. Runner chooses to
move alongside the corresponding literal edge Lij back to xij , into the gadget
where he has chosen the assignment (and wins there by moving to the final
vertex). In any other case Runner is able to win immediately by moving via sk
or via si, ci to the (circled) final vertex. Note that he only has a chance of always
winning if his chosen assignment actually fulfills the quantifier-free kernel of the
formula.

If he did not choose a correct assignment or if the formula is not satisfiable,
there is at least one clause that falsifies the QBF-formula, say clause ci. If he is
forced to go to ci, there may be no path that leads him back to the final vertex
of an existential/universal gadget.

As a side remark, one should note that it is never optimal for Runner to
take a “back”-edge (i.e. a literal edge Lij) as a shortcut, moving directly from
some xi (resp. xi) of an existential/universal gadget to the verification gadget.
In this case, the 1-edge connecting ci and the ∞-edge from xi (resp. xi) to the
verification gadget may be destroyed. Then, Runner has to move back and loses
his chance of always winning the game.

We introduced so far the construction from [5] which suffices to show PSpace-
hardness for p = 1: Using the gadgets above, Runner does have a winning strat-
egy iff the given formula is true. For a QBF-formula ϕ, we call the game arena
of this construction Gϕ.

3.3 The Parametrization Gadget

The parametrization gadget is the initial part of the game arena that is con-
structed; it is used to “adjust” the overall winning probability of Runner. Run-
ner starts from the initial vertex in this gadget. For each k ≥ 1, we define the
parametrization gadget Hk; it is depicted in Figure 5.

We reduce the question of whether the QBF-formula ϕ is true to the reacha-
bility problem over certain game arenas that result from combining Hk with Gϕ
as a graph Hk ◦ Gϕ: The out-vertex b in Hk is identified with the in-vertex a of
the first existential gadget of Gϕ. Assume Gϕ has n0 edges. We get modifications
of Gϕ with any number n ≥ n0 of edges by adding artificial extra edges (without
changing the behavior in the discussed worst case); for instance, this can be
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start out

Fig. 5. The parametrization gadget Hk.

achieved by adding a path with a dead end. We call this game arena Gnϕ. In the
sequel, we work with

Gϕ,k,n := Hk ◦ Gnϕ .

Since Hk has 4k edges, the overall number of edges in our game arena Gϕ,k,n is
4k + n. Let

pk,n := probability for Runner to traverse the
parametrization gadget Hk of Gϕ,k,n .

Lemma 3.3. Runner wins the randomized reachability game over Gϕ,k,n for
probability pk,n iff the QBF-formula ϕ is true.

Proof. First note the following: If Runner resides at vertex b, and in Hk exactly
the k edges below vertex b have been deleted so far, then Runner wins with
probability 1 iff ϕ is true (this follows immediately from the classical construction
by Löding and Rohde [5]).

Now assume that ϕ is true. In the parametrization gadget Runner starts at
node a and obviously moves towards b. Clearly, if any edge between his current
position and b is deleted, he loses the game immediately. However, if he succeeds
in getting to b, he will always win the game: First, assume the case that, in his k
steps towards b, only edges in Hk were subject to deletion. Then, Runner always
wins by moving in the first existential gadget and traversing Gnϕ, as mentioned
before. If we assume the other case that at least one of the k deletions took place
outside of Hk, there is at least one edge leading from b downward to some middle
node, say b′, and there are at least two edges leading from b′ to the two final
vertices in the parametrization gadget. Then, Runner wins by moving from b
downward to b′ and then, depending on the next deletion, by moving to one
of the two final vertices. In both cases, Runner wins over Gϕ,k,n exactly with
the probability pk,n of traversing the parametrization gadget Hk from node a to
node b.

Now, assume that ϕ is false, and that only the k edges below vertex b in Hk
are subject to deletion while Runner moves towards b (this may happen with a
probability > 0). Then, Runner’s only chance to win from b is by moving towards
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some final vertex in Gnϕ. Since ϕ is false, his winning probability in b is strictly
smaller than 1, and hence his overall winning probability for Gϕ,k,n is strictly
smaller than pk,n. ut

The computation of the probabilities pk,n only depends on the parametriza-
tion gadget Hk and n: Clearly p1,n = 1. For k ≥ 2, the winning probability is
obtained from the probability of not failing in the first step, multiplied by the
probability of not failing in the second step, etc., until the probability of not
failing in the (k − 2)-th step, where Runner tries to get to b within one step.
After the first step, Runner has still to cross k − 1 edges; neither of them may
be deleted. Overall, there are 4k+n edges, so Runner does not lose if any of the
other 4k + n− (k − 1) edges is deleted. In the last step before reaching b, k − 2
edges have been deleted, so 4k + n − (k − 2) edges are left in the game. If any
other than the edge between Runner’s current position and b is deleted, Runner
is able to reach b. Generally, in the i-th step there are 4k + n − (i − 1) edges
left; and in order for Runner to still be able to reach b, one of the 3k + n + 1
edges that are not between Runner’s current position and b has to be deleted.
Altogether,

pk,n = 3k + n+ 1
4k + n

· · · 3k + n+ 1
4k + n− (k − 2)

=
k−2∏
i=0

3k + n+ 1
4k + n− i

.

We can summarize these observations in the following theorem:

Theorem 3.4. Given a QBF-formula ϕ so that Gϕ has n0 edges, for all k, n ∈
N with k ≥ 2 and n ≥ n0 the following holds: Runner wins the randomized
reachability game over Gϕ,k,n for probability pk,n =

∏k−2
i=0

3k+n+1
4k+n−i iff the QBF-

formula ϕ is true.

In order to use this theorem for a reduction to the randomized sabotage game,
we need to show that the game arena can be constructed in polynomial time. In
the following Lemma, we show that the size of the constructed game Gϕ,k,n is
linear in the size of the inputs ϕ, k, and n:

Lemma 3.5. The size of Gϕ is linear in |ϕ|, and the size of Hk is linear in k.

Proof. For the first part, it is sufficient to realize that the size of each gadget
can be bounded by a constant. Since the number of gadgets is linear in the size
of ϕ, the number of vertices and edges of Gϕ is linear in |ϕ|. The only problem
might be the∞-edges; but by detailed observation, we see that each∞-edge can
be replaced by a 4-edge, and the construction still works in the same way.

For the second part, it suffices to note that Hk has 2k + 3 vertices and 4k
edges. ut

Now, a preliminary result can be formulated in the following form:

Corollary 3.6. For all k ≥ 2, the following problem is PSpace-hard: Given
a randomized sabotage game with n edges, does Runner win with a probability
≥ pk,n?

11



3.4 Towards the PSPACE-Hardness for Arbitrary Probabilities

We already have a reduction of QBF to randomized sabotage games with a
varying probability pk,n (which depends on the given game graph). By a closer
look at the term pk,n we see that the probability pk,n can be adjusted arbi-
trary close to 0 and arbitrary close to 1; more precisely: For a fixed k, we have
limn→∞ pk,n = 1; and for a fixed n, we have limk→∞ pk,n = 0. We will show a
stronger result, namely that the probabilities pk,n form a dense set in the interval
[0, 1], and that k and n can be computed efficiently such that pk,n is in a given
interval. More precisely, we shall show the following:

Theorem 3.7. The set of probabilities {pk,n | k, n ∈ N, k ≥ 2} is dense in
the interval [0, 1]. Moreover, given n0 ∈ N, p ∈ [0, 1], and an ε > 0, there exist
k, n ∈ N with k ≥ 2 and n ≥ n0 such that pk,n ∈ [p− ε, p+ ε]; the computation
of such k, n, and pk,n is polynomial in the numerical values of n0, 1

p , and
1
ε .

The proof of this theorem is the subject of Section 4.
Note that Theorem 3.7 provides a pseudo-polynomial algorithm, since the

computation is only polynomial in the numerical values of n0, 1
p , and

1
ε (and not

in their lengths, which are logarithmic in the numerical values). For our needs
– i.e. a polynomial time reduction to prove Theorem 2.1 – this is no restriction:
The parameter n0 corresponds to the number of edges in the input game (which
has already a polynomial representation), and p and ε are fixed values (i.e.
formally they do not belong to the problem instance).

Now, we prove our main result:

Proof (of Theorem 2.1). For arbitrary p and ε, we give a reduction from QBF to
the randomized sabotage game problem where only probabilities in the interval
[p−ε, p+ε] are allowed. Note that p and ε do not belong to the problem instance;
so they are considered constant in the following.

Given a QBF-formula ϕ, we need to compute a game Gϕ,k,n and a pk,n ∈
[p− ε, p+ ε] such that Runner wins Gϕ,k,n with a probability ≥ pk,n iff ϕ is true.
Given ϕ, we first apply the construction of Section 3.2 to construct an equivalent
sabotage game Gϕ. Let n0 be the number of edges of Gϕ, which is linear in the
size of ϕ according to Lemma 3.5. Then, we can compute k ≥ 2, n ≥ n0, and pk,n
according to Theorem 3.7. For a fixed ε, the computations are polynomial in n0
and hence polynomial in |ϕ|. Now, we extend Gϕ to an equivalent sabotage
game with n edges, denoted Gnϕ. This can be achieved by adding n−n0 dummy-
edges (e.g. we can add a path with a dead end). Thereafter, we construct the
randomized sabotage game Gϕ,k,n by combining the parametrization gadget Hk
with the game arena Gnϕ.

The claimed equivalence of ϕ to the stated randomized reachability game
problem for probability pk,n holds due to Theorem 3.4. The requirement that
pk,n is in the interval [p− ε, p+ ε] follows from Theorem 3.7. ut
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4 On the Distribution and Computation of the
Probabilities pk,n

This section deals with the proof of Theorem 3.7: Given n0 ∈ N, p ∈ [0, 1], and
an ε > 0, we can construct k > 2 and n ≥ n0 in polynomial time with respect to
the numerical values of n0, 1

p , and
1
ε , such that pk,n is in the interval [p−ε, p+ε].

The idea is to first adjust the probability pk,n arbitrary close to 1, and then
go with steps of length below any given ε > 0 arbitrary close to 0; so, we hit
every ε-neighborhood in the interval [0, 1].

In order to adjust the probability pk,n arbitrary close to 1, we first choose
k = 2 and a sufficiently high n ≥ n0. (We can artificially increase n by adding a
path with a dead end.) We will show that it suffices to choose n := max{n0, d 1

εe}.
For this choice we obtain p2,n ≥ 1− ε (≥ p− ε). Then, we decrease the proba-
bility by stepwise incrementing k by 1 (changing Hk to Hk+1 and keeping n
constant). It will turn out that (with the choice of n as above) the probability
decreases by a value that is lower than 1

4k+n+4 (≤ ε). Iterating this, the values
converge to 0, and we hit the interval [p−ε, p+ε]. Hence, the set of probabilities
{pk,n | k, n ∈ N, k ≥ 2} is dense in the interval [0, 1]. Furthermore, we will show
that it will be sufficient to increase k at most up to 8n. For this choice, we obtain
pk,n ≤ ε (≤ p+ ε).

For the complexity analysis, note the following: After each step, the algorithm
has to check efficiently whether pk,n ∈ [p − ε, p + ε]. The computation of the
term pk,n is pseudo-polynomial in k, n, and the test for pk,n ≤ p + ε is in
addition polynomial in 1

p and 1
ε . Since k and n are pseudo-linear in n0 and 1

ε ,
the whole procedure is pseudo-polynomial in n0, 1

p , and
1
ε .

Four claims remain to be proved:

– The adjustment of pk,n arbitrary close to 1 with the proposed choice of n,
i.e. given ε > 0, for n ≥ 1

ε holds p2,n ≥ 1− ε.
– The adjustment of pk,n arbitrary close to 0 with the proposed choice of k,

i.e. given ε > 0 and n ≥ 1
ε , for k ≥ 8n holds pk,n ≤ ε.

– The estimation pk,n − pk+1,n <
1

4k+n+4 .
– The test for pk,n ∈ [p− ε, p+ ε] is pseudo-polynomial in k, n, 1

p and 1
ε .

These claims are shown in the rest of this section:

Lemma 4.1. Given ε > 0, for n ≥ d 1
εe we have p2,n ≥ 1− ε.

Proof. Since n ≥ d 1
εe ≥

1
ε ≥

1
ε − 8 for ε > 0, the result follows from

p2,n = n+ 7
n+ 8

≥ 1− ε ⇐⇒ n ≥ 1
ε
− 8 .

ut

Lemma 4.2. Given ε > 0 and n ∈ N with n ≥ 1
ε and n ≥ 4, for k ≥ 8n we

have pk,n < ε.

13



Proof. First note that we have at least n ≥ 1 and k ≥ 8. Then

pk,n =
k−2∏
i=0

3k + n+ 1
4k + n− i

≤
(

3k + n+ 1
3.5k + n

) k
2

≤
(

4k + 1
4.5k

) k
2

≤
(

4.125k
4.5k

) k
2

=
(

11k
12k

) k
2

=
(

11
12

) k
2

≤
(

11
12

)4n
< ε .

The inequality
( 11

12
)4n
< ε remains to be shown. Since 1

n ≤ ε, it is sufficient to
show that

( 11
12
)4n
< 1
n :(

11
12

)4n
<

1
n
⇐⇒ n 1

4n <
12
11
⇐⇒ n

√
n

1
4 ≤
√

2
1
4 <

12
11
.

The inequality n
√
n

1
4 ≤
√

2
1
4 is equivalent to n2 ≤ 2n and holds for all n ≥ 4. ut

Lemma 4.3. For k, n ∈ N with k ≥ 2, we have pk,n − pk+1,n <
1

4k+n+4 .

Proof. In this proof we use the substitution m := 4k + n+ 4.

pk,n − pk+1,n =
k−2∏
i=0

3k + n+ 1
4k + n− i

−
k−1∏
i=0

3k + n+ 4
4k + n+ 4− i

≤
k−2∏
i=0

3k + n+ 4 + 1
4k + n+ 4− i

−
k−1∏
i=0

3k + n+ 4
4k + n+ 4− i

=
k−2∏
i=0

m− k + 1
m− i

−
k−1∏
i=0

m− k
m− i

=
k−1∏
i=0

m− k + 1
m− i

−
k−1∏
i=0

m− k
m− i

= (m− k + 1)k−1 − (m− k)k−1∏k−1
i=0 m− i

.

Now we can use the equation al−bl = (a−b)(al−1 +al−2b+ · · ·+abl−2 +bl−1) for
the estimation (d+1)k−1−dk−1 = (d+1)k−2+(d+1)k−3d+· · ·+(d+1)dk−3+dk−2

≤ (k − 1)(d+ 1)k−2. We obtain pk,n − pk+1,n

≤ (k − 1)(m− k + 1)k−2∏k−1
i=0 m− i

= k − 1
m(m− 1)

k−1∏
i=2

(m− k + 1)
m− i

≤ k − 1
m(m− 1)

.

Since m > k for all k, n ∈ N, we obtain pk,n − pk+1,n <
1
m = 1

4k+n+4 . ut

Lemma 4.4. The computation of the term pk,n is pseudo-polynomial in k and n.
The test for pk,n ≤ p+ ε is pseudo-polynomial in k and n, and polynomial in 1

p

and 1
ε .

Proof. First, we rewrite pk,n in the form

(3k + n+ 1)k−1∏k−2
i=0 4k + n− i

.
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Now, we compute the numerator and the denominator separately. For the compu-
tation, we can switch to binary encoding. Each multiplication can be performed
in polynomial time in the length of its binary encoding [13]. We need k − 2
multiplications (for this reason, the algorithm is only pseudo-polynomial). The
division and comparison of two rational numbers can be done in polynomial
time with respect to the length of their binary representations [13]. So, the quo-
tient pk,n can be computed in pseudo-polynomial time with respect to k and n,
and the test to check whether pk,n ≤ p+ ε is in addition polynomial in 1

p and 1
ε .
ut

5 Perspectives

We have introduced randomized sabotage games, and showed that the reacha-
bility problem for a probability which may vary in a fixed interval [p−ε, p+ε] is
PSpace-complete. This is a small contribution to the emerging research on the
analysis of dynamical networks with aspects of randomness. As concrete open
issues, we mention the following problems:

1. In our proof, it seems difficult to adjust the probability exactly to a given
probability p (in our formulation this is the case ε = 0). It remains open
whether this can be achieved by a refinement of the construction.

2. In our proof, we used the reachability problem with a target set F containing
at least two vertices (see Remark 3.2). One task is to extend the result
to cover also the case of a singleton as target set (note that in the non-
randomized case, the singleton reachability problem is PSpace-hard only if
one allows multi-edges [5]).

3. The proof of our model depends on the restriction that exactly one edge
per turn is deleted (rather than possibly multiple edge deletion occurring
subject to given probabilities). Sharpening the mentioned problem of “dy-
namic graph reliability” [7] to probabilities that are independent of Runner’s
position, we can study the model where in every turn each edge fails with a
probability p(e), or even with probability 1

n in the uniform case.
4. Extending the model with a mechanism of restoration is a challenging task

(for instance, reactive Kripke models [1] and backup parity games [11] ad-
dress this issue). In [9] we developed a theory of dynamic networks where
Runner and Blocker are replaced by two players, Constructor and Destruc-
tor, that add resp. delete vertices/edges, and the problem of guaranteeing
certain network properties (like connectivity) is addressed. We are presently
integrating probabilistic features into this model, starting from the present
paper. Another interesting direction of research is to include more general
winning conditions in appropriate logics [2].
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