
Parametrized Infinite Games and Higher-Order
Pushdown Strategies

Paul Hänsch, Michaela Slaats?, and Wolfgang Thomas

Lehrstuhl Informatik 7, RWTH Aachen University, Aachen, Germany
paul.haensch@rwth-aachen.de

slaats@automata.rwth-aachen.de

thomas@informatik.rwth-aachen.de

Abstract. We consider infinite two-player games parametrized by a set
P of natural numbers where the winning condition is given by a regu-
lar ω-language (including the parameter P). Extending recent work of
Rabinovich we study here predicates P where the structure (N, +1, P)
belongs to the pushdown hierarchy (or “Caucal hierarchy”). For such a
predicate P where (N, +1, P) occurs in the k-th level of the hierarchy, we
provide an effective determinacy result and show that winning strategies
can be implemented by deterministic level-k pushdown automata.

1 Introduction

The algorithmic theory of infinite games has its first fundamental result in the
Theorem of Büchi and Landweber [BL69]. This theorem is the positive solution
to a problem of Church [Chu63] on “regular” infinite games. In the simplest
setting, the game is played between two players 1 and 2 who choose bits in
alternation, first player 1, then player 2, at each moment i ∈ N. We call X(i)
the i-th bit chosen by player 1 and Y (i) the i-th bit of player 2. A sequence
X(0), Y (0), X(1), Y (1), . . . is a play of the game, and it defines (via the concept
of characteristic function) two sets X,Y ⊆ N. The winning condition of the
game is a regular ω-language, presented in this paper by a monadic second-
order formula ϕ(X,Y) over the structure (N,+1). When a play (X,Y) satisfies
this formula over the structure (N,+1) then player 2 wins the play, otherwise
player 1 wins. In a standard way one now introduces the notion of strategy and
winning strategy for the two players.

The Büchi-Landweber Theorem states that given a monadic second-order
formula ϕ(X,Y) as winning condition, the game associated with ϕ is determined
(i.e., one of the two players has a winning strategy), one can decide who is
the winner, and one can construct from ϕ a corresponding finite-state winning
strategy (i.e., a strategy executable by a finite automaton with output).

In the present paper we study a generalized setting in which a fixed set P ⊆ N
is added as a “parameter”. So one works in monadic second-order logic over a
structure (N,+1, P) rather than (N,+1).
? Research supported by DFG Research Training Group AlgoSyn (“Algorithmic Syn-

thesis of Reactive and Discrete-Continuous Systems”)

There are (at least) two motivations for this model: First, the resulting game
can be viewed as an interaction between three agents. In addition to a standard
scenario where a “controller” plays against a possibly hostile “environment”
which is completely free in its choices, the predicate P represents now a “game
context” that has dynamic behavior over time but is fixed and predictable. So
one may call the games studied here two-person games with context. Secondly,
the adjunction of a predicate P to the setting of the Büchi-Landweber Theorem
gives a very natural step beyond the regular games, where new phenomena arise.

For instance, it is easy to see that even for a recursive set P , the exact ana-
logue of the Büchi-Landweber Theorem fails. This is clear from the following
example: Consider a non-recursive, recursively enumerable set S with enumera-
tion s0, s1, . . ., and let w be the ω-word 10s010s11 . . ., which defines (the char-
acteristic function χP of) a set P . Clearly P is recursive. We then have n ∈ S
iff the segment 10n1 occurs in χP , i.e., iff there is a P -element such that its
(n + 1)-st successor is the next P -element. Thus S is reducible to the monadic
second-order (even the first-order) theory of (N,+1, P) which must hence be un-
decidable. Now consider the winning condition ϕn(X,Y) which does not depend
on X and says: “Produce output 1ω if the segment 10n1 occurs in χP , otherwise
0ω.” Clearly for each ϕn there is a winning strategy for player 2, but it cannot
be computed from ϕn.

In [Rab06,Rab07], Rabinovich showed that for recursive P , an analogue
of the Büchi-Landweber Theorem holds if the monadic second-order theory of
(N,+1, P) is decidable. In this case, determinacy holds again, the winner can be
computed, and a recursive winning strategy (rather than a finite-state winning
strategy) can be constructed from the winning condition.

The first aim of this paper is to develop a new presentation of Rabinovich’s
result which rests more on automata theoretic concepts than [Rab06,Rab07].
While in that paper other sources are invoked for central details, we give a
self-contained outline, using only standard facts.

Then we refine the claim on recursiveness of strategies in parametrized games,
by providing – for a large class of sets P – a tight connection between the
“complexity” of P and the complexity of winning strategies. Here we refer to
those sets P such that the structure (N,+1, P) belongs to the “Caucal hierarchy”
(of [Cau02]). It is known that in this case the monadic second-order theory of
(N,+1, P) is indeed decidable. A large class of interesting sets P is covered by
the hierarchy, among them the powers kn of a fixed number k, the powers nk

for fixed exponent k, and the set of factorial numbers n!. We show, using recent
work of Carayol and Slaats [CS08], that for a set P such that (N,+1, P) belongs
to the k-level of the hierarchy (short: “P is of level k”), a winning strategy (for
the respective winner) can be guaranteed that also belongs to the k-th level.
More precisely, we use the characterization of the levels of the Caucal hierarchy
in terms of higher-order pushdown automata and show that for sets P of level k,
winning strategies exist that are executable by deterministic level-k pushdown
automata. This gives a substantial improvement over the general property of a
strategy to be recursive (computable).

2

The last section offers a discussion and some open questions; e.g. on those
predicates P where (N,+1, P) does not belong to the Caucal hierarchy but
nevertheless the monadic second-order theory of this structure is decidable (for
the latter class see e.g. [CT02,RT06]).

2 Parametrized Regular Games and Their Solution

We use standard terminology as introduced, e.g., in [GTW02]. By a regular game
we mean an infinite two-player game in the sense of Gale and Stewart [GS53]
where the winning condition is given by a regular ω-language. Both players,
called 1 and 2, pick in each move an element from a finite alphabet; for notational
simplicity we assume here that the alphabet is {0, 1} for each of the players. (All
definitions and results of this paper extend in a straightforward way to the case
of arbitrary finite alphabets.) A play is a sequence

X(0), Y (0), X(1), Y (1), . . .

where X(i) is supplied by player 1 and Y (i) by player 2. As formalism to ex-
press winning conditions we use formulas ϕ(X,Y) of monadic second-order logic
(MSO-logic) over (N,+1); it is known that MSO-logic allows to define precisely
the regular ω-languages. So we speak of a regular game. (We use here freely
the correspondence between a set P of natural numbers and its characteristic
bit sequence χP .) When a set P (and a corresponding constant again denoted
P) is added, we refer to the structure (N,+1, P), denote the winning condition
sometimes as ϕ(P,X, Y), and speak of a regular P -game. A play of this game
may be viewed as an ω word over the alphabet {0, 1}3:

Predicate P 0 1 1 0 1 . . .
Player 1 X 0 1 0 1 1 . . .
Player 2 Y 1 0 1 0 1 . . .

The aim of this section is a new shape of proof for the following result of
Rabinovich [Rab06,Rab07].

Theorem 1. Regular P -games are determined, and if the MSO-theory of the
structure (N,+1, P) is decidable then the winner can be computed and a recursive
winning strategy can be constructed from the winning condition.

For the proof we use three fundamental results summarized in the following
Theorem (for details and definitions see [GTW02]):

Theorem 2. (Known Facts)

(a) Each MSO-formula can be transformed into an equivalent (deterministic)
parity automaton.

(b) The MSO theory of (N,+1, P) is decidable iff the following decision problem
AutP is decidable.
AutP : Given a parity (or Büchi) automaton A, does A accept P?

3

(c) Parity games (even over infinite game arenas) are determined, and the win-
ner has a positional winning strategy.

Proof. (of Theorem 1.) In this abridged version we present only a detailed
sketch.1

Step 1. Given ϕ(P,X, Y) with fixed interpretation of P , we start with a parity
automaton Aϕ, say with state set Q and n = |Q|, that is equivalent to ϕ(Z,X, Y)
(i.e. it has arbitrary ω-words over {0, 1}3 as inputs). First we transform Aϕ into a
game arena. This just means to split a transition from state p via a triple (b, c, d)
of bits into a state q into two transitions: The first takes the “context bit” b and
the choice c of player 1 into account and leads from state p to an intermediate
state (p, b, c). In this state the bit d supplied by player 2 is processed, and state
q is reached. In the states p, Player 1 moves (first in the role of the “context
player”, then by his own bit) and in the states (p, b, c) player 2 moves. We obtain
a finite game arena Gϕ. The parity acceptance condition of the automaton is
turned into a winning condition over Gϕ; the coloring of vertices is inherited
from the coloring of the states of the automaton.

Step 2. In a second step we transformGϕ into an infinite game arena which takes
into account the fixed choice of the set P . For this we parameterize the vertices
p and (p, b, c) by natural numbers, calling the new vertices (p)i, respectively
(p, b, c)i. The initial vertex is now (q0)0. From (p)i we have an edge to (p, b, c)i

iff in Gϕ there is an edge from p to (p, b, c) and the bit b indicates correctly
whether i ∈ P or not (being 1 in the first and 0 in the second case). From
(p, b, c)i we have an edge to (q)i+1 iff in Gϕ there is an edge from (p, b, c) to q.
The color of (p)i is that of p, similarly for (p, b, c)i. Call the resulting game graph
G′

ϕ. Now we have:

• Player 2 wins the P -regular game defined by ϕ iff Player 2 wins the parity
game over G′

ϕ from its initial vertex.

Note that the game graph G′
ϕ is acyclic and structured into slices S0, S1, . . .,

each of which contains only a bounded number of vertices. For k = 2i, the slice
Sk contains up to n (= |Q|) vertices (p)i, and for k = 2i+1, the slice Sk contains
up to 2n vertices (p, b, c)i (note that b is fixed for given i). In order to have the
same time scale in the characteristic sequence χP and the sequence of slices,
we group the slices into a sequence of pairs (S0, S1), (S2, S3), . . . and code this
sequence – and hence G′

ϕ – by an ω-word over an appropriate alphabet Σ. Let
us denote by αϕ the ω-word coding G′

ϕ.
Finally, we note that the transformation of this step can be implemented by

a finite automaton, uniformly in P :

Lemma 1. Given a finite game arena Gϕ, there is a finite-state transducer (in
the format of a Mealy automaton) which transforms the characteristic sequence
of a set P into the corresponding sequence αϕ.

1 A detailed account appears in [Hän09].

4

Step 3. By the memoryless determinacy of parity games, one of the two players
has a memoryless winning strategy in G′

ϕ. From this we obtain the determinacy
claim of the Theorem. We now deal with the effectiveness claims and by symme-
try focus on player 2 alone. A memoryless strategy for player 2 is a function that
maps each vertex (p, b, c)i to some state (q)i+1, i.e. for each i we apply a map
from a set with at most 2n elements to a set with at most n elements. Let Γ
be the finite set of these maps. A memoryless strategy of player 2 is thus coded
by an ω-word γ = γ(0)γ(1) . . . over Γ where γ(i) is the map applied at moment
i by player 2. It is a straightforward exercise to set up a deterministic parity
automaton Tϕ that runs on input words over Σ × Γ and checks for an ω-word

αϕ ◦ γ := (αϕ(0), γ(0)), (αϕ(1), γ(1)), . . .

whether γ represents a winning strategy in the game coded by αϕ.

Step 4. Invoking the transducer of Lemma 1 of Step 2, we can transform Tϕ

into an automaton T ′
ϕ that runs over the input alphabet {0, 1} × Γ rather than

Σ × Γ . On an input χP ◦ γ, T ′
ϕ computes, using the transducer, the sequence

αϕ from χP and on αϕ ◦ γ simultaneously simulates Tϕ. We call T ′
ϕ a “winning

strategy tester” for ϕ. Now we have: T ′
ϕ accepts χP ◦γ iff γ represents a winning

strategy of player 2 in the P -game with winning condition ϕ.

Step 5. The strategy tester of Step 4 will now be transformed into a nondeter-
ministic “winning strategy guesser” Sϕ that runs over the input alphabet {0, 1}
only. On the input word β this automaton guesses a sequence γ ∈ Γω and on
β ◦ γ works like T ′

ϕ. It is obtained in the format of a nondeterministic parity au-
tomaton. For convenience we assume it converted into a nondeterministic Büchi
automaton Bϕ.

Let us summarize:

Proposition 1 The Büchi automaton Bϕ accepts the characteristic sequence of
a set P iff player 2 has a winning strategy in the regular P -game with winning
condition ϕ.

This shows the first effectiveness claim of the Theorem: If the MSO-theory
of (N,+1, P) is decidable, one can decide whether player 2 wins the regular P -
game with winning condition ϕ. If just suffices to apply item (b) of Theorem 2
(of known facts) above.

Step 6. Finally, given that player 2 wins the regular P -game with winning
condition ϕ, we have to construct a recursive strategy for him. In view of Step
5 it suffices to construct effectively an accepting run of Bϕ from the assumption
that such a run exists. (We use here the fact that the strategy can be extracted
from an accepting run of the Büchi automaton.) In terms of MSO-logic, this
amounts to the proof of a Selection Lemma: Assume that the MSO-theory of
(N,+1, P) is decidable. If (N,+1) |= ∃Zψ(P,Z) then a satisfying recursive set
Z can be constructed (i.e. a procedure that decides for each i whether i ∈ Z).

We give a proof, following an argument of Siefkes [Sie73], in automata theo-
retic terminology. It involves the well-known merging relation that was already
used by McNaughton [McN66] in his proof of determinization of Büchi automata.

5

Let B be a Büchi automaton with state set S. We call two words B-equivalent
(short u ∼B v) if for each pair s, s′ of states, B can reach s′ from s via u iff this
is the case for v.

Denote by P [i, j] the segment P (i) . . . P (j) of the characteristic sequence
of P . Call two positions i, j mergable if there is k > i, j such that P [i, k] ∼B
P [j, k]. This is an equivalence relation over N of finite index. We can com-
pute a representative for each merge-equivalence class. For this, one uses the
MSO-theory of (N,+1, P) repeatedly as “oracle”, also in order to determine that
enough representatives, say n1, . . . , nm, have been computed. (Just observe that
i and j merge iff (N,+1, P) satisfies the sentence expressing ∃zP [i, z] ∼B P [j, z].
We know that all representatives occur up to position k by checking truth of the
sentence expressing “∀x > k∃y ≤ k : x, y merge”.)

Again using the MSO-theory of (N,+1, P) as oracle, we pick a representative
n from n1, . . . , nm with the following property: There is a B-run ρacc on χP that
visits a certain fixed final state qf at infinitely many times k that merge with n.
(It is clear how to express this property of n.) Note that such qf and n can be
found by a finite search process, due to the finite index of the merging relation
and the assumption that an accepting run exists.

Using qf and n, we construct effectively a run ρ of B on χP visiting qf
infinitely often, thus accepting χP . We start out by looking for a position p0

which merges with n and such that qf is reachable from the initial state q0 of B
via P [0, p0−1] using a finite run ρ0. Such p0 exists by assumption on n. The run
ρ0 will be an initial segment of the desired accepting run ρ. For some k0 > n, p0

we know P [n, k0] ∼B P [p0, k0]. Hence ρ0 can be extended such that at position
k0 the same state as that of ρacc is reached. We can now pick p1 > k0 such that
p1 merges again with n and such that qf is reachable from q0 via P [0, p1 − 1],
by a finite run which is an extension of ρ0. Call this finite run ρ1. Continuing in
this way by successive finite extensions each of which is computable and ends by
a final state, we construct the accepting run ρ as desired. Note that by invoking
the MSO-theory of (N,+1, P) we can check for the merge equivalence between
n and candidate numbers, so the sequence of numbers p0, p1, . . . is computable.

3 Background on Higher-order Pushdown Automata

In the next two sections we consider sets P such that the structure (N,+1, P)
belongs to the Caucal hierarchy. Caucal introduced in [Cau02] a large class of in-
finite graphs which can be generated starting from finite trees and graphs apply-
ing MSO-interpretations and unfoldings in alternation. The resulting hierarchy
is a very rich collection of models each of them having a decidable MSO-theory.
In [CW03] Carayol and Wöhrle showed that the graphs of the Caucal hierarchy
coincide with the transition graphs of higher-order pushdown automata. We will
develop here a representation of the parameter sets P by higher-order pushdown
automata. For this we define a new type of deterministic higher-order pushdown
automaton that produces an infinite 0-1-sequences (and hence a set P) as output.

6

We start with some background on higher-order pushdown stacks and au-
tomata. For this we first introduce the higher-order pushdown stacks and opera-
tions to manipulate them. Afterwards we define higher-order pushdown systems
and introduce a concept of “regularity” for sets of higher-order stacks. Then we
define deterministic higher-order pushdown automata which produce sets P ⊆ N
as output. Finally we give the definition of higher-order pushdown parity games
and recall a result of [CS08] that we need.

A level-1 stack over a finite alphabet Γ can be seen as a word of Γ ∗; the
empty stack (written []1) corresponds just to ε. A level-(k+1) stack for k ≥ 1
is a non-empty sequence of level-k stacks. The empty stack of level k + 1 is the
level-(k+1) stack containing only the empty stack of level k and is written []k+1.
The set of all stacks of some level is written Stacks1(Γ) := Γ ∗ for level 1 and
Stacksk+1(Γ) := (Stacksk(Γ))+ for level k ≥ 1.

We define the following partial functions on higher-order stacks called op-
erations. On level 1 we have as operations for each symbol x ∈ Γ the op-
erations pushx and popx. They are respectively defined on level-1 stacks by
pushx([s0, . . . , sn]1) = [s0, . . . , sn, x]1) and popx([s0, . . . , sn, x]1) = [s0, . . . , sn]1.

For each level k+1 ≥ 2, we consider the level-(k+1) operation copyk which
adds a copy of the top-most level-k stack on top of the existing level-k-stacks.
We also allow the symmetric operation copyk which removes the top-most level-
k stack if it is equal to its predecessor level-k-stack. Formally, these operations
are defined on level-(k+1) stacks by copyk([s0, . . . , sn]k+1) = [s0, . . . , sn, sn]k+1

and copyk([s0, . . . , sn, sn]k+1) = [s0, . . . , sn]k+1. In addition, for each level k,
we define a level-k operation written T[]k allowing to test emptiness at level k.
Formally T[]k(s) is equal to s if s = []k and is undefined otherwise.

An operation ψ of level k is extended to stacks of level ` > k using the
definition ψ([s0, . . . , sn]`) = [s0, . . . , ψ(sn)]`. We now define inductively Ops1 =
{pushx, popx |x ∈ Γ}∪{T[]1} and Opsk+1 =Opsk∪{copyk, copyk, T[]k+1}. More-
over, we denote by Ops∗k the monoid for the compositions of partial functions
generated by Opsk.

Definition 1. A higher-order pushdown system P of level k (k-HOPDS for
short) is defined as a tuple (Q,Σ, Γ,∆) where Q is the finite set of states, Σ is
the input alphabet, Γ is the stack symbol alphabet and ∆ ⊆ Q × Σ × Opsk ×Q
is the transition relation.

A configuration is a pair (p, s) ∈ Q×Stacksk(Γ). We write (p, s) α→ (q, s′) if
there exists a transition (p, α, ρ, q) ∈ ∆ such that s′ = ρ(s).

Now we introduce a notion of regularity for sets of higher-order pushdown
stacks which relies on the construction of the stacks by symmetric operations. We
need “regular” sets of stacks for the a new type of tests in deterministic higher-
order pushdown automata. This format will be appropriate for the generation
of 0-1-sequences (i.e., predicates P ⊆ N).

The notion of regularity for (symmetric) operations was introduced indepen-
dently in [Car05] and [Fra05]. Observe that from a given level-k-stack a word
from Ops∗k yields a new stack, and a language O ⊆ Ops∗k a set of stacks. A set

7

of level-k stacks is regular if it can be obtained by applying a regular subset of
Ops∗k to the empty level-k stack []k. We write ORegk(Γ) for the regular sets of
stacks of level k.

In the subsequent definition of pushdown automata that produce 0-1-se-
quences as output, we refer to a finite family R of regular sets of stacks. The
output alphabet is Σ = {0, 1, ε}; ε serves as a formal output token for the tran-
sitions that do not produce either 0 or 1. By τ we shall denote the identity
function on Opsk, i.e. τ(s) = s for all s ∈ Stacksk(Γ).

Definition 2. A higher-order pushdown sequence generator of level k (short:
k-HOPDSG) is a deterministic higher-order pushdown automaton A of level k
with tests in a finite set R of subsets of Stacksk(Γ) which is given by the tuple
(Q,Σ, Γ, q0,∆) where Q is a finite set of states, Σ = {0, 1, ε} is the output
alphabet, Γ is the stack alphabet, q0 ∈ Q is the initial state, and ∆ ⊆ Q ×
Σ × Opsk × R × Q is the transition relation. The set of tests is defined by
R = {T1, . . . , Tn} with Ti ∈ ORegk(Γ) for all i ∈ [1, n].

A configuration of A is again a tuple in Q × Stacksk(Γ) and the initial
configuration is (q0, []k). We write (p, s) α−→

A
(q, s′) if there exists a transition

(p, α, γ, T, q) ∈ ∆, such that s′ = γ(s) and s ∈ T .
The automaton is deterministic if for every configuration (q, s) there is at

most one transition (q, α, γ, T, p) in ∆ which can be applied, i.e. this means that
the operation γ is defined on s and the current stack s is in the set of stacks
defined by the test T .

An ω-word α ∈ {0, 1}ω is defined by the automaton A if there exists an
infinite run

(q0, []k) a0−→
A

(q1, s1)
α1−→
A

(q2, s2)
α2−→
A

(q3, s3)
α3−→
A

. . .

such that α is obtained from α0α1α2α3 . . . by deleting all occurrences of ε. (Of
course, an automaton may produce just a finite word. We focus on the infinite
words generated by HOPDSG’s.)

The “regular tests” in our level k-HOPDSG’s are introduced to obtain a
model of computation that is deterministic and generates precisely the sets P
such that (N,+1, P) is in the Caucal hierarchy. Determinism is needed for our
game-theoretic context. The automata in the literature have less powerful tests
but are non-deterministic. In our model we can restrict to apply a “test” if the
operations that follow the current transition can indeed be applied to the current
stack. We shall use the tests only in transitions with output ε and then speak of
restricted tests.

Definition 3. A set P ⊆ N is level-k-definable if there is a higher-order push-
down sequence generator A of level k with restriced tests that defines P .

The following result is easy (and the proof omitted here).

Theorem 3. A structure (N,+1, P) is in the k-th level of the Caucal hierarchy
iff P is level-k-definable by a higher-order pushdown sequence generator.

8

As an example for the application of sequence generators, let us describe
the idea for a level-2 higher-order pushdown sequence generator defining the
set P = {2i | i ∈ N} of the powers of 2. Note that after output 1 at position
2i, the next output 1 occurs 2i steps later at position 2i+1. The idea for the
automaton is to remember in its first level 1 stack the current i by the stack
content 0i. Above this bottom-line the automaton can build a tower of i stacks
with the contents 0i−1, 0i−2, . . . , 0. We can now allow the top symbols of these
i stacks to be 0 or 1; so the sequence of b1 . . . bi of top symbols is a binary
number (the leading bit corresponds to the bottom stack). A little exercise now
shows that starting from the top symbol sequence b1 . . . bi = 0i we can “count”
in binary up to b1 . . . bi = 1i, where of course many steps are needed to proceed
from one binary number to the next; and when such a new binary number is
reached the automaton outputs a 0 (otherwise the output is ε). More precisely,
the automaton deletes the stacks with top symbol 1 until it reaches a stack
with top symbol 0; it turns it into 1 and goes up again building towers of 0 of
decreasing length as at the start (see Figure 1).

2664
[0]
[0 1]
[0 0 1]
[0 0 0 0]

3775 ⇒
2664

[1]
[0 1]
[0 0 1]
[0 0 0 0]

3775 ⇒
2664

[0 0 0 1]

3775 ⇒
2664

[0]
[0 0]
[0 0 0]
[0 0 0 1]

3775
Fig. 1. Idea for the higher-order pushdown sequence generator producing the param-
eter power of 2.

Let us continue the example and discuss a regular P -game for P = {2i | i ∈
N}. The winning condition requires that player 2 copies the bits played by player
1 except for the moments i− 1 where i ∈ P ; in these moments the converse bit
is required. An example play won by player 2 is indicated in Figure 2.

Set P 0 1 1 0 1 0 0 0 1 0 . . .
Player 1 0 1 0 0 1 0 0 1 1 1 . . .
Player 2 1 0 0 1 1 0 0 0 1 1 . . .

Fig. 2. An example play.

It is easy to see that a finite-state winning strategy does not suffice for player
2 to win this game; no finite memory suffices to determine the moments i − 1
with i ∈ P . On the other hand, if player 2 has the computational means of
a HOPDA that defines P , he can detect the critical moments without using a
look-ahead.

We return to the preparations of main result. In the following we introduce parity
games played on the configuration graph of a higher-order pushdown system.

9

Definition 4. A higher-order pushdown parity game G of level k is given by a
k-HOPDS P = (Q,Σ, Γ,∆) together with a partition of the states Q0]Q1 and a
coloring mapping ΩP : Q→ N. The induced game arena is (V0, V1, E,Ω) where:
V0 = Q0 × Stacksk(Γ), V1 = Q1 × Stacksk(Γ), E is the Σ-labeled transition
relation of P and Ω is defined for (p, s) ∈ Q× Stacksk(Γ) by Ω(p, s) := ΩP (p).

For the proof of our main theorem we will need the following result:

Theorem 4 ([CS08]). Given a pushdown parity game of level k, we can con-
struct in k-Exptime reduced level-k automata2 describing the winning region,
respectively a global positional winning strategy for each of the two players.

4 Main Result

We now want to show that a regular P -game where P is defined by a higher-order
pushdown sequence generator of level k with restricted tests can be solved in k-
exponential time, and that the winner has a winning strategy which is executable
by a level-k pushdown automaton.

Theorem 5. Let P ⊆ N be defined by a higher-order pushdown sequence gen-
erator P of level k with restricted tests. The regular P -game where the winning
condition is given by a deterministic parity word automaton C over {0, 1}3 is (de-
termined and) solvable: It can be decided who wins the game and for the winner
one can construct a level-k HOPDA that computes a winning strategy.

In the proof, we first treat solvability and the format of the winning strategy;
the statement on complexity is shown afterwards.

Proof. Let P = (QP , ΣP , ΓP , q
P
0 ,∆P) be a higher-order pushdown sequence gen-

erator of level k with restricted tests defining P , and let C = (QC , ΣC , q
C
0 , δC , ΩC)

be a parity word automaton over the alphabet ΣC = {0, 1}3 defining the winning
condition.

We construct a higher-order pushdown parity game (HOPDPG) GP simulat-
ing the game between player 1 and player 2 with the external parameter P . The
idea is that in GP we compute with the help of P, i.e. the level-k stack, the next
bit of the sequence χP , then let first player 1 choose a bit then player 2. These
three bits we store in the state of the current vertex and then compute by C
the color of its vertex. (For this we give C those three bits as input.) The parity
game GP is then won by player 2 iff the given regular P -game is won by player
2. Using this allows us to invoke Theorem 4 to solve the game GP and compute
a winning strategy.

The HOPDPG GP is defined by the HOPDS PG = (Q,ΣP , ΓP , q0,∆), the
state partition Q1, Q2 and the coloring Ω.

The HOPDS PG works repeatedly in four phases, indicated by the symbols
of the alphabet Φ := {ΦP , Φ1, Φ2, ΦC}. The symbol ΦP indicates that the next
2 The reduced level-k automata are finite automata running over Opsk and accepting

regular sets of stacks, i.e. sets in ORegk(Γ). See [CS08] for more information.

10

bit of χP is computed by P, the symbol Φi that player i chooses a bit, and the
symbol ΦC that the next state of C is computed by evaluating the chosen bits.

The HOPDS PG has the state set Q = QP × QC × Φ × {0, 1}3 where for a
state (qP , qC , x, (b0, b1, b2)) ∈ Q we have that qP resp. qC is the current state in
P resp. C. Furthermore by the third component we know in which phase of the
game we are, and by (b0, b1, b2) we memorize the current bit of χP and the last
bits chosen by player 1 and player 2. The start state is q0 = (qP0 , q

C
0 , ΦP , (0, 0, 0)).

The transitions ∆ are the following. (Note that the bits b′0, b
′
1, b

′
2 are the current

choices for χP , player 1, respectively player 2.)

– for (qP , ε, γ, T, q′P)∈∆P :
((qP , qC , ΦP , (b0, b1, b2)), ε, γ, (q′P , qC , ΦP , (b0, b1, b2)))

– for b′0 ∈ {0, 1}, (qP , b′0, γ, T, q′P)∈∆P :
((qP , qC , ΦP , (b0, b1, b2)), b′0, γ, (q

′
P , qC , Φ1, (b′0, b1, b2)))

– for b′1 ∈ {0, 1}:
((qP , qC , Φ1, (b0, b1, b2)), b′1, τ, (qP , qC , Φ2, (b0, b′1, b2)))

– for b′2 ∈ {0, 1}:
((qP , qC , Φ2, (b0, b1, b2)), b′2, τ, (qP , qC , ΦC , (b0, b1, b

′
2)))

– for δC(qC , (b0, b1, b2)) = q′C :
((qP , qC , ΦC , (b0, b1, b2)), ε, τ, (qP , q′C , ΦP , (b0, b1, b2)))

The coloring is defined by:

Ω((qP , qC , x, (b0, b1, b2))) = ΩC(qC) for x ∈ {ΦC , Φ1, Φ2}
Ω((qP , qC , ΦP , (b0, b1, b2))) = (2·n) where n is the maximal color in ΩC .

The state partitioning is defined by:

Q1 = QP ×QC × {Φ1, ΦP , ΦC} × {0, 1}3

Q2 = QP ×QC × {Φ2} × {0, 1}3.

The tests which are used in the computation of χP , i.e. in the transitions
of P to make the HOPDSG deterministic, are omitted in the game. This can
be done because we have assumed a special kind of test, i.e. the resticted tests.
Note that in the game GP the computation of P is not completely deterministic
because we attribute to player 1 the choice of bits for the sequence χP . If player
1 chooses such a bit incorrectly, however, then either the current stack operation
or one of the subsequent ones will be undefined or he would get stuck in the
computation of a later χP -bit (here we use the resticted tests). In the case that
in a Φ1-state some operation is not defined on the current stack, player 1 loses
immediately; in the second case he will lose because the only color which is seen
infinitely often in the game will be even; note that we colored the ΦP -vertices
by an even number that cannot be surpassed; so player 2 wins in this case.

The idea for the construction of the strategy automaton for the player win-
ning the game is similar as above. Assume player 2 wins the game GP . Then
by Theorem 4 we get two regular sets of level-k stacks, say S0 and S1 where S0

11

contains all configurations3 where player 2 should take 0 as output and S1 those
where output 1 should be taken.

The strategy automaton is similar constructed as the automaton PG except
that in the transitions with Φ2 we add as tests once S0 and and once S1:

σ((qP , qC , Φ2, (b0, b1, b2)), 0, τ, S0) = (qP , qC , ΦC , (b0, b1, 0))
σ((qP , qC , Φ2, (b0, b1, b2)), 1, τ, S1) = (qP , qC , ΦC , (b0, b1, 1)).

As output function we define:

µ((qP , qC , Φ2, b0, b1, b2), S0) = 0
µ((qP , qC , Φ2, b0, b1, b2), S1) = 1.

If player 1 wins the game the construction is analogous.

Finally, we address the complexity claim of Theorem 4.

Proposition 1. The computation of the winner and the winning strategy in
Theorem 5 is done in k-exponential time.

Proof. By Theorem 4 we have a k-Exptime procedure to compute the winner
of the game GP and also a positional winning strategy for the player winning
GP . As the construction of GP is polynomial in the size of the automata P and
C we have altogether again a k-Exptime algorithm to compute the winner of
the regular P -game as well as the desired winning strategy automaton.

5 Concluding Remarks

The purpose of the present paper was twofold: First we developed a streamlined
and integrated proof of a result of Rabinovich [Rab06,Rab07] on regular P -
games, using automata theoretic concepts and ideas that go back to Siefkes
[Sie73]. The result says that for recursive P , regular P -games can be solved
effectively when the MSO-theory of (N,+1, P) is decidable, and that in this case
also a recursive winning strategy for the winner can be constructed.

It is interesting to note that the construction of the recursive strategy involves
an unbounded number of uses of the “oracle” of the MSO- theory of (N,+1, P). In
particular, the computation of a system of representatives for the merge relation
(Step 6 of Section 2) involves a finite but unbounded number of queries. Thus
we showed that even for non-recursive P (and in case that player 2 wins) that
there is a winning strategy which, coded as a set, is Turing reducible to the
MSO-theory of (N,+1, P). We do not know whether this reducibility relation
can be sharpened to tt-reducibility (truth-table reducibility; see [Rog67]). It is
known that in general the MSO-theory of (N,+1, P) is tt-reducible – but not

3 The state of the configuration (p, s) is stored in the set by pushing it onto the topmost
stack, i.e. we have pushp(s) ∈ S0.

12

btt-reducible – to the second jump P ′′ of P ([Tho78]). So for the constructed
winning strategy S we have

S ≤T MSO-theory of (N,+1, P) ≤tt P
′′

In the second part of the paper, we considered predicates that can be gen-
erated by higher-order pushdown automata (covering a large class of interesting
examples) and showed that they can be solved with strategies that are again
computable by such automata. In this context, we mention some questions.

– In natural examples, mentioned e.g. at the end of Section 3, the reference to
P in the winning condition involves just a bounded look-ahead on P . In our
approach a look-ahead is made superfluous by a corresponding computation
from the past, which involves a big overhead. Strategies (maybe even finite-
state strategies) with bounded look-ahead on P seem to be a natural class,
and the range of their applicability should be investigated.

– A related question is to decide when a regular P -game where P is defined by
a higher-order pushdown automaton can be solved with finite-state winning
strategies.

– Finally, one can aim at finding more general frameworks than the Caucal
hierarchy as considered here, and develop corresponding more general types
of winning strategies (that are, however, more restricted than the recursive
strategies).

References

[BL69] R. Büchi and L. Landweber. Solving sequential conditions by finite state
strategies. Transactions of the AMS, 138(27):295 – 311, 1969.

[Car05] A. Carayol. Regular sets of higher-order pushdown stacks. In Proc. MFCS’05,
volume 3618 of LNCS, pages 168–179, 2005.

[Cau02] D. Caucal. On infinite graphs having a decidable monadic theory. In Proc.
MFCS’02, volume 2420 of LNCS, pages 165–176, 2002.

[Chu63] A. Church. Logic, arithmetic, and automata. In Proc. Int. Congr. Math.
1962, pages 23–35, Djursholm, Sweden, 1963. Inst. Mittag-Leffler.

[CS08] Arnaud Carayol and Michaela Slaats. Positional strategies for higher-order
pushdown parity games. In Mathematical Foundations of Computer Science,
volume 5162 of LNCS, pages 217–228. Springer, 2008.

[CT02] O. Carton and W. Thomas. The monadic theory of morphic infinite words
and generalizations. Technical Report 176 (1): 51-65, Inf. Comput., 2002.

[CW03] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms
of logic and higher-order pushdown automata. In Proc. FSTTCS’03, volume
2914 of LNCS, pages 112–123, 2003.

[Fra05] S. Fratani. Automates à piles de piles . . . de piles. PhD thesis, Université
Bordeaux 1, 2005.

[GS53] D. Gale and F. M. Stewart. Infinite games with perfect information. In
Contributions to the Theory of Games, 1953.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer Verlag,
2002.

13

[Hän09] P. Hänsch. Infinite games with parameters. Master’s thesis, Lehrstuhl für
Informatik 7, RWTH Aachen, Aachen, Germany, 2009.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. In Inform. Contr., volume 9, pages 521–530, 1966.

[Rab06] A. Rabinovich. Church synthesis problem with parameters. In CSL, volume
4207 of LNCS, pages 546–561. Springer, 2006.

[Rab07] A. Rabinovich. Church synthesis problem with parameters. In Logical Meth-
ods in Computer Science, volume 3(4:9), pages 1–24, 2007.

[Rog67] H. Rogers. Theory of recursive functions and effective computability.
McGraw-Hill, New York, 1967.

[RT06] A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural
number with unary predicates. In LNCS, volume 4207, Berlin, 2006. Springer.

[Sie73] D. Siefkes. The recursive sets in certain monadic second order fragments of
arithmetic. Archiv mathematischer Logik, 17, 1975 (submitted 1973).

[Tho78] W. Thomas. The theory of successor with an extra predicate. Arch. math.
Logik, 237:121–132, 1978.

14

