Parametrized Infinite Games and Higher-Order Pushdown Strategies

Paul Hänsch, Michaela Slaats^{*}, and Wolfgang Thomas

Lehrstuhl Informatik 7, RWTH Aachen University, Aachen, Germany paul.haensch@rwth-aachen.de slaats@automata.rwth-aachen.de thomas@informatik.rwth-aachen.de

Abstract. We consider infinite two-player games parametrized by a set P of natural numbers where the winning condition is given by a regular ω -language (including the parameter P). Extending recent work of Rabinovich we study here predicates P where the structure $(\mathbb{N}, +1, P)$ belongs to the pushdown hierarchy (or "Caucal hierarchy"). For such a predicate P where $(\mathbb{N}, +1, P)$ occurs in the k-th level of the hierarchy, we provide an effective determinacy result and show that winning strategies can be implemented by deterministic level-k pushdown automata.

1 Introduction

The algorithmic theory of infinite games has its first fundamental result in the Theorem of Büchi and Landweber [BL69]. This theorem is the positive solution to a problem of Church [Chu63] on "regular" infinite games. In the simplest setting, the game is played between two players 1 and 2 who choose bits in alternation, first player 1, then player 2, at each moment $i \in \mathbb{N}$. We call X(i) the *i*-th bit chosen by player 1 and Y(i) the *i*-th bit of player 2. A sequence $X(0), Y(0), X(1), Y(1), \ldots$ is a play of the game, and it defines (via the concept of characteristic function) two sets $X, Y \subseteq \mathbb{N}$. The winning condition of the game is a regular ω -language, presented in this paper by a monadic second-order formula $\varphi(X, Y)$ over the structure $(\mathbb{N}, +1)$. When a play (X, Y) satisfies this formula over the structure $(\mathbb{N}, +1)$ then player 2 wins the play, otherwise player 1 wins. In a standard way one now introduces the notion of strategy and winning strategy for the two players.

The Büchi-Landweber Theorem states that given a monadic second-order formula $\varphi(X, Y)$ as winning condition, the game associated with φ is determined (i.e., one of the two players has a winning strategy), one can decide who is the winner, and one can construct from φ a corresponding finite-state winning strategy (i.e., a strategy executable by a finite automaton with output).

In the present paper we study a generalized setting in which a fixed set $P \subseteq \mathbb{N}$ is added as a "parameter". So one works in monadic second-order logic over a structure $(\mathbb{N}, +1, P)$ rather than $(\mathbb{N}, +1)$.

^{*} Research supported by DFG Research Training Group AlgoSyn ("Algorithmic Synthesis of Reactive and Discrete-Continuous Systems")

There are (at least) two motivations for this model: First, the resulting game can be viewed as an interaction between three agents. In addition to a standard scenario where a "controller" plays against a possibly hostile "environment" which is completely free in its choices, the predicate P represents now a "game context" that has dynamic behavior over time but is fixed and predictable. So one may call the games studied here two-person games with context. Secondly, the adjunction of a predicate P to the setting of the Büchi-Landweber Theorem gives a very natural step beyond the regular games, where new phenomena arise.

For instance, it is easy to see that even for a recursive set P, the exact analogue of the Büchi-Landweber Theorem fails. This is clear from the following example: Consider a non-recursive, recursively enumerable set S with enumeration s_0, s_1, \ldots , and let w be the ω -word $10^{s_0}10^{s_1}1\ldots$, which defines (the characteristic function χ_P of) a set P. Clearly P is recursive. We then have $n \in S$ iff the segment 10^{n_1} occurs in χ_P , i.e., iff there is a P-element such that its (n + 1)-st successor is the next P-element. Thus S is reducible to the monadic second-order (even the first-order) theory of $(\mathbb{N}, +1, P)$ which must hence be undecidable. Now consider the winning condition $\varphi_n(X, Y)$ which does not depend on X and says: "Produce output 1^{ω} if the segment 10^{n_1} occurs in χ_P , otherwise 0^{ω} ." Clearly for each φ_n there is a winning strategy for player 2, but it cannot be computed from φ_n .

In [Rab06,Rab07], Rabinovich showed that for recursive P, an analogue of the Büchi-Landweber Theorem holds *if the monadic second-order theory of* $(\mathbb{N}, +1, P)$ *is decidable*. In this case, determinacy holds again, the winner can be computed, and a recursive winning strategy (rather than a finite-state winning strategy) can be constructed from the winning condition.

The first aim of this paper is to develop a new presentation of Rabinovich's result which rests more on automata theoretic concepts than [Rab06,Rab07]. While in that paper other sources are invoked for central details, we give a self-contained outline, using only standard facts.

Then we refine the claim on recursiveness of strategies in parametrized games, by providing - for a large class of sets P - a tight connection between the "complexity" of P and the complexity of winning strategies. Here we refer to those sets P such that the structure $(\mathbb{N}, +1, P)$ belongs to the "Caucal hierarchy" (of [Cau02]). It is known that in this case the monadic second-order theory of $(\mathbb{N}, +1, P)$ is indeed decidable. A large class of interesting sets P is covered by the hierarchy, among them the powers k^n of a fixed number k, the powers n^k for fixed exponent k, and the set of factorial numbers n!. We show, using recent work of Carayol and Slaats [CS08], that for a set P such that $(\mathbb{N}, +1, P)$ belongs to the k-level of the hierarchy (short: "P is of level k"), a winning strategy (for the respective winner) can be guaranteed that also belongs to the k-th level. More precisely, we use the characterization of the levels of the Caucal hierarchy in terms of higher-order pushdown automata and show that for sets P of level k, winning strategies exist that are executable by deterministic level-k pushdown automata. This gives a substantial improvement over the general property of a strategy to be recursive (computable).

The last section offers a discussion and some open questions; e.g. on those predicates P where $(\mathbb{N}, +1, P)$ does not belong to the Caucal hierarchy but nevertheless the monadic second-order theory of this structure is decidable (for the latter class see e.g. [CT02,RT06]).

2 Parametrized Regular Games and Their Solution

We use standard terminology as introduced, e.g., in [GTW02]. By a regular game we mean an infinite two-player game in the sense of Gale and Stewart [GS53] where the winning condition is given by a regular ω -language. Both players, called 1 and 2, pick in each move an element from a finite alphabet; for notational simplicity we assume here that the alphabet is $\{0, 1\}$ for each of the players. (All definitions and results of this paper extend in a straightforward way to the case of arbitrary finite alphabets.) A play is a sequence

 $X(0), Y(0), X(1), Y(1), \ldots$

where X(i) is supplied by player 1 and Y(i) by player 2. As formalism to express winning conditions we use formulas $\varphi(X, Y)$ of monadic second-order logic (MSO-logic) over $(\mathbb{N}, +1)$; it is known that MSO-logic allows to define precisely the regular ω -languages. So we speak of a regular game. (We use here freely the correspondence between a set P of natural numbers and its characteristic bit sequence χ_P .) When a set P (and a corresponding constant again denoted P) is added, we refer to the structure $(\mathbb{N}, +1, P)$, denote the winning condition sometimes as $\varphi(P, X, Y)$, and speak of a *regular P-game*. A play of this game may be viewed as an ω word over the alphabet $\{0, 1\}^3$:

Predicate	P	0	1	1	0	1	
Player 1	X	0	1	0	1	1	
Player 2	Y	1	0	1	0	1	

The aim of this section is a new shape of proof for the following result of Rabinovich [Rab06,Rab07].

Theorem 1. Regular P-games are determined, and if the MSO-theory of the structure $(\mathbb{N}, +1, P)$ is decidable then the winner can be computed and a recursive winning strategy can be constructed from the winning condition.

For the proof we use three fundamental results summarized in the following Theorem (for details and definitions see [GTW02]):

Theorem 2. (Known Facts)

- (a) Each MSO-formula can be transformed into an equivalent (deterministic) parity automaton.
- (b) The MSO theory of (N, +1, P) is decidable iff the following decision problem Aut_P is decidable.

 Aut_P : Given a parity (or Büchi) automaton \mathcal{A} , does \mathcal{A} accept P?

(c) Parity games (even over infinite game arenas) are determined, and the winner has a positional winning strategy.

Proof. (of Theorem 1.) In this abridged version we present only a detailed sketch.¹

Step 1. Given $\varphi(P, X, Y)$ with fixed interpretation of P, we start with a parity automaton \mathcal{A}_{φ} , say with state set Q and n = |Q|, that is equivalent to $\varphi(Z, X, Y)$ (i.e. it has arbitrary ω -words over $\{0, 1\}^3$ as inputs). First we transform \mathcal{A}_{φ} into a game arena. This just means to split a transition from state p via a triple (b, c, d) of bits into a state q into two transitions: The first takes the "context bit" b and the choice c of player 1 into account and leads from state p to an intermediate state (p, b, c). In this state the bit d supplied by player 2 is processed, and state q is reached. In the states p, Player 1 moves (first in the role of the "context player", then by his own bit) and in the states (p, b, c) player 2 moves. We obtain a finite game arena G_{φ} . The parity acceptance condition of the automaton is turned into a winning condition over G_{φ} ; the coloring of vertices is inherited from the coloring of the states of the automaton.

Step 2. In a second step we transform G_{φ} into an infinite game arena which takes into account the fixed choice of the set P. For this we parameterize the vertices p and (p, b, c) by natural numbers, calling the new vertices $(p)_i$, respectively $(p, b, c)_i$. The initial vertex is now $(q_0)_0$. From $(p)_i$ we have an edge to $(p, b, c)_i$ iff in G_{φ} there is an edge from p to (p, b, c) and the bit b indicates correctly whether $i \in P$ or not (being 1 in the first and 0 in the second case). From $(p, b, c)_i$ we have an edge to $(q)_{i+1}$ iff in G_{φ} there is an edge from (p, b, c) to q. The color of $(p)_i$ is that of p, similarly for $(p, b, c)_i$. Call the resulting game graph G'_{φ} . Now we have:

 Player 2 wins the P-regular game defined by φ iff Player 2 wins the parity game over G'_φ from its initial vertex.

Note that the game graph G'_{φ} is acyclic and structured into slices S_0, S_1, \ldots , each of which contains only a bounded number of vertices. For k = 2i, the slice S_k contains up to n (= |Q|) vertices $(p)_i$, and for k = 2i + 1, the slice S_k contains up to 2n vertices $(p, b, c)_i$ (note that b is fixed for given i). In order to have the same time scale in the characteristic sequence χ_P and the sequence of slices, we group the slices into a sequence of pairs $(S_0, S_1), (S_2, S_3), \ldots$ and code this sequence – and hence G'_{φ} – by an ω -word over an appropriate alphabet Σ . Let us denote by α_{φ} the ω -word coding G'_{φ} .

Finally, we note that the transformation of this step can be implemented by a finite automaton, uniformly in P:

Lemma 1. Given a finite game arena G_{φ} , there is a finite-state transducer (in the format of a Mealy automaton) which transforms the characteristic sequence of a set P into the corresponding sequence α_{φ} .

¹ A detailed account appears in [Hän09].

Step 3. By the memoryless determinacy of parity games, one of the two players has a memoryless winning strategy in G'_{φ} . From this we obtain the determinacy claim of the Theorem. We now deal with the effectiveness claims and by symmetry focus on player 2 alone. A memoryless strategy for player 2 is a function that maps each vertex $(p, b, c)_i$ to some state $(q)_{i+1}$, i.e. for each *i* we apply a map from a set with at most 2n elements to a set with at most *n* elements. Let Γ be the finite set of these maps. A memoryless strategy of player 2 is thus coded by an ω -word $\gamma = \gamma(0)\gamma(1) \dots$ over Γ where $\gamma(i)$ is the map applied at moment *i* by player 2. It is a straightforward exercise to set up a deterministic parity automaton \mathcal{T}_{φ} that runs on input words over $\Sigma \times \Gamma$ and checks for an ω -word

$$\alpha_{\varphi} \circ \gamma := (\alpha_{\varphi}(0), \gamma(0)), \ (\alpha_{\varphi}(1), \gamma(1)), \ \dots$$

whether γ represents a winning strategy in the game coded by α_{φ} .

Step 4. Invoking the transducer of Lemma 1 of Step 2, we can transform \mathcal{T}_{φ} into an automaton \mathcal{T}'_{φ} that runs over the input alphabet $\{0,1\} \times \Gamma$ rather than $\Sigma \times \Gamma$. On an input $\chi_P \circ \gamma$, \mathcal{T}'_{φ} computes, using the transducer, the sequence α_{φ} from χ_P and on $\alpha_{\varphi} \circ \gamma$ simultaneously simulates \mathcal{T}_{φ} . We call \mathcal{T}'_{φ} a "winning strategy *tester*" for φ . Now we have: \mathcal{T}'_{φ} accepts $\chi_P \circ \gamma$ iff γ represents a winning strategy of player 2 in the *P*-game with winning condition φ .

Step 5. The strategy tester of Step 4 will now be transformed into a nondeterministic "winning strategy guesser" S_{φ} that runs over the input alphabet $\{0, 1\}$ only. On the input word β this automaton guesses a sequence $\gamma \in \Gamma^{\omega}$ and on $\beta \circ \gamma$ works like \mathcal{T}'_{φ} . It is obtained in the format of a nondeterministic parity automaton. For convenience we assume it converted into a nondeterministic Büchi automaton \mathcal{B}_{φ} .

Let us summarize:

Proposition 1 The Büchi automaton \mathcal{B}_{φ} accepts the characteristic sequence of a set *P* iff player 2 has a winning strategy in the regular *P*-game with winning condition φ .

This shows the first effectiveness claim of the Theorem: If the MSO-theory of $(\mathbb{N}, +1, P)$ is decidable, one can decide whether player 2 wins the regular *P*-game with winning condition φ . If just suffices to apply item (b) of Theorem 2 (of known facts) above.

Step 6. Finally, given that player 2 wins the regular *P*-game with winning condition φ , we have to construct a recursive strategy for him. In view of Step 5 it suffices to construct effectively an accepting run of \mathcal{B}_{φ} from the assumption that such a run exists. (We use here the fact that the strategy can be extracted from an accepting run of the Büchi automaton.) In terms of MSO-logic, this amounts to the proof of a Selection Lemma: Assume that the MSO-theory of $(\mathbb{N}, +1, P)$ is decidable. If $(\mathbb{N}, +1) \models \exists Z \psi(P, Z)$ then a satisfying recursive set Z can be constructed (i.e. a procedure that decides for each i whether $i \in Z$).

We give a proof, following an argument of Siefkes [Sie73], in automata theoretic terminology. It involves the well-known merging relation that was already used by McNaughton [McN66] in his proof of determinization of Büchi automata. Let \mathcal{B} be a Büchi automaton with state set S. We call two words \mathcal{B} -equivalent (short $u \sim_{\mathcal{B}} v$) if for each pair s, s' of states, \mathcal{B} can reach s' from s via u iff this is the case for v.

Denote by P[i, j] the segment $P(i) \dots P(j)$ of the characteristic sequence of P. Call two positions i, j mergable if there is k > i, j such that $P[i, k] \sim_{\mathcal{B}} P[j, k]$. This is an equivalence relation over \mathbb{N} of finite index. We can compute a representative for each merge-equivalence class. For this, one uses the MSO-theory of $(\mathbb{N}, +1, P)$ repeatedly as "oracle", also in order to determine that enough representatives, say n_1, \dots, n_m , have been computed. (Just observe that i and j merge iff $(\mathbb{N}, +1, P)$ satisfies the sentence expressing $\exists z P[i, z] \sim_{\mathcal{B}} P[j, z]$. We know that all representatives occur up to position k by checking truth of the sentence expressing " $\forall x > k \exists y \leq k : x, y$ merge".)

Again using the MSO-theory of $(\mathbb{N}, \pm 1, P)$ as oracle, we pick a representative n from n_1, \ldots, n_m with the following property: There is a \mathcal{B} -run ρ_{acc} on χ_P that visits a certain fixed final state q_f at infinitely many times k that merge with n. (It is clear how to express this property of n.) Note that such q_f and n can be found by a finite search process, due to the finite index of the merging relation and the assumption that an accepting run exists.

Using q_f and n, we construct effectively a run ρ of \mathcal{B} on χ_P visiting q_f infinitely often, thus accepting χ_P . We start out by looking for a position p_0 which merges with n and such that q_f is reachable from the initial state q_0 of \mathcal{B} via $P[0, p_0 - 1]$ using a finite run ρ_0 . Such p_0 exists by assumption on n. The run ρ_0 will be an initial segment of the desired accepting run ρ . For some $k_0 > n, p_0$ we know $P[n, k_0] \sim_{\mathcal{B}} P[p_0, k_0]$. Hence ρ_0 can be extended such that at position k_0 the same state as that of ρ_{acc} is reached. We can now pick $p_1 > k_0$ such that p_1 merges again with n and such that q_f is reachable from q_0 via $P[0, p_1 - 1]$, by a finite run which is an extension of ρ_0 . Call this finite run ρ_1 . Continuing in this way by successive finite extensions each of which is computable and ends by a final state, we construct the accepting run ρ as desired. Note that by invoking the MSO-theory of $(\mathbb{N}, +1, P)$ we can check for the merge equivalence between n and candidate numbers, so the sequence of numbers p_0, p_1, \ldots is computable.

3 Background on Higher-order Pushdown Automata

In the next two sections we consider sets P such that the structure $(\mathbb{N}, +1, P)$ belongs to the Caucal hierarchy. Caucal introduced in [Cau02] a large class of infinite graphs which can be generated starting from finite trees and graphs applying MSO-interpretations and unfoldings in alternation. The resulting hierarchy is a very rich collection of models each of them having a decidable MSO-theory. In [CW03] Carayol and Wöhrle showed that the graphs of the Caucal hierarchy coincide with the transition graphs of higher-order pushdown automata. We will develop here a representation of the parameter sets P by higher-order pushdown automata. For this we define a new type of deterministic higher-order pushdown automaton that produces an infinite 0-1-sequences (and hence a set P) as output.

We start with some background on higher-order pushdown stacks and automata. For this we first introduce the higher-order pushdown stacks and operations to manipulate them. Afterwards we define higher-order pushdown systems and introduce a concept of "regularity" for sets of higher-order stacks. Then we define deterministic higher-order pushdown automata which produce sets $P \subseteq \mathbb{N}$ as output. Finally we give the definition of higher-order pushdown parity games and recall a result of [CS08] that we need.

A level-1 stack over a finite alphabet Γ can be seen as a word of Γ^* ; the empty stack (written $[]_1$) corresponds just to ε . A *level*-(k+1) stack for $k \geq 1$ is a non-empty sequence of level-k stacks. The empty stack of level k + 1 is the level-(k+1) stack containing only the empty stack of level k and is written $[]_{k+1}$. The set of all stacks of some level is written $Stacks_1(\Gamma) := \Gamma^*$ for level 1 and $Stacks_{k+1}(\Gamma) := (Stacks_k(\Gamma))^+$ for level $k \geq 1$.

We define the following partial functions on higher-order stacks called *operations*. On level 1 we have as operations for each symbol $x \in \Gamma$ the operations $push_x$ and pop_x . They are respectively defined on level-1 stacks by $push_x([s_0,\ldots,s_n]_1) = [s_0,\ldots,s_n,x]_1)$ and $pop_x([s_0,\ldots,s_n,x]_1) = [s_0,\ldots,s_n]_1$.

For each level $k+1 \geq 2$, we consider the level-(k+1) operation $copy_k$ which adds a copy of the top-most level-k stack on top of the existing level-k-stacks. We also allow the symmetric operation \overline{copy}_k which removes the top-most level-k stack if it is equal to its predecessor level-k-stack. Formally, these operations are defined on level-(k+1) stacks by $copy_k([s_0, \ldots, s_n]_{k+1}) = [s_0, \ldots, s_n, s_n]_{k+1}$ and $\overline{copy}_k([s_0, \ldots, s_n, s_n]_{k+1}) = [s_0, \ldots, s_n]_{k+1}$. In addition, for each level k, we define a level-k operation written $T_{[\]k}$ allowing to test emptiness at level k. Formally $T_{[\]k}(s)$ is equal to s if $s = [\]_k$ and is undefined otherwise.

An operation ψ of level k is extended to stacks of level $\ell > k$ using the definition $\psi([s_0, \ldots, s_n]_{\ell}) = [s_0, \ldots, \psi(s_n)]_{\ell}$. We now define inductively $Ops_1 = \{push_x, pop_x | x \in \Gamma\} \cup \{T_{[]_1}\}$ and $Ops_{k+1} = Ops_k \cup \{copy_k, \overline{copy}_k, T_{[]_{k+1}}\}$. Moreover, we denote by Ops_k^* the monoid for the compositions of partial functions generated by Ops_k .

Definition 1. A higher-order pushdown system P of level k (k-HOPDS for short) is defined as a tuple $(Q, \Sigma, \Gamma, \Delta)$ where Q is the finite set of states, Σ is the input alphabet, Γ is the stack symbol alphabet and $\Delta \subseteq Q \times \Sigma \times Ops_k \times Q$ is the transition relation.

A configuration is a pair $(p, s) \in Q \times Stacks_k(\Gamma)$. We write $(p, s) \xrightarrow{\alpha} (q, s')$ if there exists a transition $(p, \alpha, \rho, q) \in \Delta$ such that $s' = \rho(s)$.

Now we introduce a notion of regularity for sets of higher-order pushdown stacks which relies on the construction of the stacks by symmetric operations. We need "regular" sets of stacks for the a new type of tests in deterministic higher-order pushdown automata. This format will be appropriate for the generation of 0-1-sequences (i.e., predicates $P \subseteq \mathbb{N}$).

The notion of *regularity* for (symmetric) operations was introduced independently in [Car05] and [Fra05]. Observe that from a given level-k-stack a word from Ops_k^* yields a new stack, and a language $O \subseteq Ops_k^*$ a set of stacks. A set of level-k stacks is regular if it can be obtained by applying a regular subset of Ops_k^* to the empty level-k stack $[]_k$. We write $OReg_k(\Gamma)$ for the regular sets of stacks of level k.

In the subsequent definition of pushdown automata that produce 0-1-sequences as output, we refer to a finite family \mathcal{R} of regular sets of stacks. The output alphabet is $\Sigma = \{0, 1, \varepsilon\}$; ε serves as a formal output token for the transitions that do not produce either 0 or 1. By τ we shall denote the identity function on Ops_k , i.e. $\tau(s) = s$ for all $s \in Stacks_k(\Gamma)$.

Definition 2. A higher-order pushdown sequence generator of level k (short: k-HOPDSG) is a deterministic higher-order pushdown automaton \mathcal{A} of level k with tests in a finite set \mathcal{R} of subsets of $Stacks_k(\Gamma)$ which is given by the tuple $(Q, \Sigma, \Gamma, q_0, \Delta)$ where Q is a finite set of states, $\Sigma = \{0, 1, \varepsilon\}$ is the output alphabet, Γ is the stack alphabet, $q_0 \in Q$ is the initial state, and $\Delta \subseteq Q \times$ $\Sigma \times Ops_k \times \mathcal{R} \times Q$ is the transition relation. The set of tests is defined by $\mathcal{R} = \{T_1, \ldots, T_n\}$ with $T_i \in OReg_k(\Gamma)$ for all $i \in [1, n]$.

A configuration of \mathcal{A} is again a tuple in $Q \times Stacks_k(\Gamma)$ and the initial configuration is $(q_0, []_k)$. We write $(p, s) \xrightarrow{\alpha}_{\mathcal{A}} (q, s')$ if there exists a transition $(p, \alpha, \gamma, T, q) \in \mathcal{A}$, such that $s' = \gamma(s)$ and $s \in T$.

The automaton is *deterministic* if for every configuration (q, s) there is at most one transition $(q, \alpha, \gamma, T, p)$ in Δ which can be applied, i.e. this means that the operation γ is defined on s and the current stack s is in the set of stacks defined by the test T.

An ω -word $\alpha \in \{0,1\}^{\omega}$ is *defined* by the automaton \mathcal{A} if there exists an infinite run

$$(q_0, []_k) \xrightarrow{a_0} \mathcal{A} (q_1, s_1) \xrightarrow{\alpha_1} \mathcal{A} (q_2, s_2) \xrightarrow{\alpha_2} \mathcal{A} (q_3, s_3) \xrightarrow{\alpha_3} \dots$$

such that α is obtained from $\alpha_0 \alpha_1 \alpha_2 \alpha_3 \dots$ by deleting all occurrences of ε . (Of course, an automaton may produce just a finite word. We focus on the infinite words generated by HOPDSG's.)

The "regular tests" in our level k-HOPDSG's are introduced to obtain a model of computation that is deterministic and generates precisely the sets Psuch that $(\mathbb{N}, +1, P)$ is in the Caucal hierarchy. Determinism is needed for our game-theoretic context. The automata in the literature have less powerful tests but are non-deterministic. In our model we can restrict to apply a "test" if the operations that follow the current transition can indeed be applied to the current stack. We shall use the tests only in transitions with output ε and then speak of *restricted tests*.

Definition 3. A set $P \subseteq \mathbb{N}$ is level-k-definable if there is a higher-order pushdown sequence generator \mathcal{A} of level k with restriced tests that defines P.

The following result is easy (and the proof omitted here).

Theorem 3. A structure $(\mathbb{N}, +1, P)$ is in the k-th level of the Caucal hierarchy iff P is level-k-definable by a higher-order pushdown sequence generator.

As an example for the application of sequence generators, let us describe the idea for a level-2 higher-order pushdown sequence generator defining the set $P = \{2^i \mid i \in \mathbb{N}\}$ of the powers of 2. Note that after output 1 at position 2^{i} , the next output 1 occurs 2^{i} steps later at position 2^{i+1} . The idea for the automaton is to remember in its first level 1 stack the current i by the stack content 0^i . Above this bottom-line the automaton can build a tower of *i* stacks with the contents $0^{i-1}, 0^{i-2}, \ldots, 0$. We can now allow the top symbols of these i stacks to be 0 or 1; so the sequence of $b_1 \dots b_i$ of top symbols is a binary number (the leading bit corresponds to the bottom stack). A little exercise now shows that starting from the top symbol sequence $b_1 \dots b_i = 0^i$ we can "count" in binary up to $b_1 \dots b_i = 1^i$, where of course many steps are needed to proceed from one binary number to the next; and when such a new binary number is reached the automaton outputs a 0 (otherwise the output is ε). More precisely, the automaton deletes the stacks with top symbol 1 until it reaches a stack with top symbol 0; it turns it into 1 and goes up again building towers of 0 of decreasing length as at the start (see Figure 1).

[[0]]]	$\left[1 \right]$]]	[]		[[0]]	
[01]	01]		、	[00]	
$ [001] ^{=}$	[001]	j ⇒		\Rightarrow	[00 0]	
[000 0]]	[000]	0]	[0001]		[0001]	

Fig. 1. Idea for the higher-order pushdown sequence generator producing the parameter power of 2.

Let us continue the example and discuss a regular P-game for $P = \{2^i \mid i \in \mathbb{N}\}$. The winning condition requires that player 2 copies the bits played by player 1 except for the moments i - 1 where $i \in P$; in these moments the converse bit is required. An example play won by player 2 is indicated in Figure 2.

Fig. 2. An example play.

It is easy to see that a finite-state winning strategy does not suffice for player 2 to win this game; no finite memory suffices to determine the moments i - 1 with $i \in P$. On the other hand, if player 2 has the computational means of a HOPDA that defines P, he can detect the critical moments without using a look-ahead.

We return to the preparations of main result. In the following we introduce parity games played on the configuration graph of a higher-order pushdown system. **Definition 4.** A higher-order pushdown parity game \mathcal{G} of level k is given by a k-HOPDS $P = (Q, \Sigma, \Gamma, \Delta)$ together with a partition of the states $Q_0 \uplus Q_1$ and a coloring mapping $\Omega_P : Q \to \mathbb{N}$. The induced game arena is (V_0, V_1, E, Ω) where: $V_0 = Q_0 \times \operatorname{Stacks}_k(\Gamma), V_1 = Q_1 \times \operatorname{Stacks}_k(\Gamma), E$ is the Σ -labeled transition relation of P and Ω is defined for $(p, s) \in Q \times \operatorname{Stacks}_k(\Gamma)$ by $\Omega(p, s) := \Omega_P(p)$.

For the proof of our main theorem we will need the following result:

Theorem 4 ([CS08]). Given a pushdown parity game of level k, we can construct in k-EXPTIME reduced level-k automata² describing the winning region, respectively a global positional winning strategy for each of the two players.

4 Main Result

We now want to show that a regular P-game where P is defined by a higher-order pushdown sequence generator of level k with restricted tests can be solved in kexponential time, and that the winner has a winning strategy which is executable by a level-k pushdown automaton.

Theorem 5. Let $P \subseteq \mathbb{N}$ be defined by a higher-order pushdown sequence generator \mathcal{P} of level k with restricted tests. The regular P-game where the winning condition is given by a deterministic parity word automaton \mathcal{C} over $\{0,1\}^3$ is (determined and) solvable: It can be decided who wins the game and for the winner one can construct a level-k HOPDA that computes a winning strategy.

In the proof, we first treat solvability and the format of the winning strategy; the statement on complexity is shown afterwards.

Proof. Let $\mathcal{P} = (Q_{\mathcal{P}}, \Sigma_{\mathcal{P}}, \Gamma_{\mathcal{P}}, q_0^{\mathcal{P}}, \Delta_{\mathcal{P}})$ be a higher-order pushdown sequence generator of level k with restricted tests defining P, and let $\mathcal{C} = (Q_{\mathcal{C}}, \Sigma_{\mathcal{C}}, q_0^{\mathcal{C}}, \delta_{\mathcal{C}}, \Omega_{\mathcal{C}})$ be a parity word automaton over the alphabet $\Sigma_{\mathcal{C}} = \{0, 1\}^3$ defining the winning condition.

We construct a higher-order pushdown parity game (HOPDPG) \mathcal{G}_P simulating the game between player 1 and player 2 with the external parameter P. The idea is that in \mathcal{G}_P we compute with the help of \mathcal{P} , i.e. the level-k stack, the next bit of the sequence χ_P , then let first player 1 choose a bit then player 2. These three bits we store in the state of the current vertex and then compute by \mathcal{C} the color of its vertex. (For this we give \mathcal{C} those three bits as input.) The parity game \mathcal{G}_P is then won by player 2 iff the given regular P-game is won by player 2. Using this allows us to invoke Theorem 4 to solve the game \mathcal{G}_P and compute a winning strategy.

The HOPDPG \mathcal{G}_P is defined by the HOPDS $\mathcal{P}_{\mathcal{G}} = (Q, \Sigma_{\mathcal{P}}, \Gamma_{\mathcal{P}}, q_0, \Delta)$, the state partition Q_1, Q_2 and the coloring Ω .

The HOPDS $\mathcal{P}_{\mathcal{G}}$ works repeatedly in four phases, indicated by the symbols of the alphabet $\Phi := \{\Phi_P, \Phi_1, \Phi_2, \Phi_C\}$. The symbol Φ_P indicates that the next

² The reduced level-k automata are finite automata running over Ops_k and accepting regular sets of stacks, i.e. sets in $OReg_k(\Gamma)$. See [CS08] for more information.

bit of χ_P is computed by \mathcal{P} , the symbol Φ_i that player *i* chooses a bit, and the symbol Φ_C that the next state of \mathcal{C} is computed by evaluating the chosen bits.

The HOPDS $\mathcal{P}_{\mathcal{G}}$ has the state set $Q = Q_{\mathcal{P}} \times Q_{\mathcal{C}} \times \Phi \times \{0,1\}^3$ where for a state $(q_{\mathcal{P}}, q_{\mathcal{C}}, x, (b_0, b_1, b_2)) \in Q$ we have that $q_{\mathcal{P}}$ resp. $q_{\mathcal{C}}$ is the current state in \mathcal{P} resp. \mathcal{C} . Furthermore by the third component we know in which phase of the game we are, and by (b_0, b_1, b_2) we memorize the current bit of χ_P and the last bits chosen by player 1 and player 2. The start state is $q_0 = (q_0^{\mathcal{P}}, q_0^{\mathcal{C}}, \Phi_P, (0, 0, 0))$. The transitions Δ are the following. (Note that the bits b'_0, b'_1, b'_2 are the current choices for χ_P , player 1, respectively player 2.)

$$\begin{split} &- \text{ for } (q_{\mathcal{P}}, \varepsilon, \gamma, T, q'_{\mathcal{P}}) \in \Delta_{\mathcal{P}}: \\ & ((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{P}}, (b_0, b_1, b_2)), \varepsilon, \gamma, (q'_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{P}}, (b_0, b_1, b_2))) \\ &- \text{ for } b'_0 \in \{0, 1\}, (q_{\mathcal{P}}, b'_0, \gamma, T, q'_{\mathcal{P}}) \in \Delta_{\mathcal{P}}: \\ & ((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{P}}, (b_0, b_1, b_2)), b'_0, \gamma, (q'_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_1, (b'_0, b_1, b_2))) \\ &- \text{ for } b'_1 \in \{0, 1\}: \\ & ((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_1, (b_0, b_1, b_2)), b'_1, \tau, (q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, (b_0, b'_1, b_2))) \\ &- \text{ for } b'_2 \in \{0, 1\}: \\ & ((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, (b_0, b_1, b_2)), b'_2, \tau, (q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{C}}, (b_0, b_1, b'_2))) \\ &- \text{ for } \delta_{\mathcal{C}}(q_{\mathcal{C}}, (b_0, b_1, b_2)) = q'_{\mathcal{C}}: \end{split}$$

$$((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{C}}, (b_0, b_1, b_2)), \varepsilon, \tau, (q_{\mathcal{P}}, q_{\mathcal{C}}', \Phi_{\mathcal{P}}, (b_0, b_1, b_2))))$$

The coloring is defined by:

$$\begin{aligned} \Omega((q_{\mathcal{P}}, q_{\mathcal{C}}, x, (b_0, b_1, b_2))) &= \Omega_{\mathcal{C}}(q_{\mathcal{C}}) \text{ for } x \in \{\Phi_{\mathcal{C}}, \Phi_1, \Phi_2\} \\ \Omega((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{P}}, (b_0, b_1, b_2))) &= (2 \cdot n) \text{ where } n \text{ is the maximal color in } \Omega_{\mathcal{C}}. \end{aligned}$$

The state partitioning is defined by:

$$Q_1 = Q_{\mathcal{P}} \times Q_{\mathcal{C}} \times \{\Phi_1, \Phi_{\mathcal{P}}, \Phi_{\mathcal{C}}\} \times \{0, 1\}^3$$
$$Q_2 = Q_{\mathcal{P}} \times Q_{\mathcal{C}} \times \{\Phi_2\} \times \{0, 1\}^3.$$

The tests which are used in the computation of χ_P , i.e. in the transitions of \mathcal{P} to make the HOPDSG deterministic, are omitted in the game. This can be done because we have assumed a special kind of test, i.e. the resticted tests. Note that in the game \mathcal{G}_P the computation of P is not completely deterministic because we attribute to player 1 the choice of bits for the sequence χ_P . If player 1 chooses such a bit incorrectly, however, then either the current stack operation or one of the subsequent ones will be undefined or he would get stuck in the computation of a later χ_P -bit (here we use the resticted tests). In the case that in a Φ_1 -state some operation is not defined on the current stack, player 1 loses immediately; in the second case he will lose because the only color which is seen infinitely often in the game will be even; note that we colored the Φ_P -vertices by an even number that cannot be surpassed; so player 2 wins in this case.

The idea for the construction of the strategy automaton for the player winning the game is similar as above. Assume player 2 wins the game \mathcal{G}_P . Then by Theorem 4 we get two regular sets of level-k stacks, say S_0 and S_1 where S_0 contains all configurations³ where player 2 should take 0 as output and S_1 those where output 1 should be taken.

The strategy automaton is similar constructed as the automaton $\mathcal{P}_{\mathcal{G}}$ except that in the transitions with Φ_2 we add as tests once S_0 and and once S_1 :

$$\sigma((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, (b_0, b_1, b_2)), 0, \tau, S_0) = (q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{C}}, (b_0, b_1, 0))$$

$$\sigma((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, (b_0, b_1, b_2)), 1, \tau, S_1) = (q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_{\mathcal{C}}, (b_0, b_1, 1)).$$

As output function we define:

 $\mu((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, b_0, b_1, b_2), S_0) = 0$ $\mu((q_{\mathcal{P}}, q_{\mathcal{C}}, \Phi_2, b_0, b_1, b_2), S_1) = 1.$

If player 1 wins the game the construction is analogous.

Finally, we address the complexity claim of Theorem 4.

Proposition 1. The computation of the winner and the winning strategy in Theorem 5 is done in k-exponential time.

Proof. By Theorem 4 we have a k-EXPTIME procedure to compute the winner of the game \mathcal{G}_P and also a positional winning strategy for the player winning \mathcal{G}_P . As the construction of \mathcal{G}_P is polynomial in the size of the automata \mathcal{P} and \mathcal{C} we have altogether again a k-EXPTIME algorithm to compute the winner of the regular P-game as well as the desired winning strategy automaton.

5 Concluding Remarks

The purpose of the present paper was twofold: First we developed a streamlined and integrated proof of a result of Rabinovich [Rab06,Rab07] on regular *P*games, using automata theoretic concepts and ideas that go back to Siefkes [Sie73]. The result says that for recursive *P*, regular *P*-games can be solved effectively when the MSO-theory of $(\mathbb{N}, +1, P)$ is decidable, and that in this case also a recursive winning strategy for the winner can be constructed.

It is interesting to note that the construction of the recursive strategy involves an unbounded number of uses of the "oracle" of the MSO- theory of $(\mathbb{N}, +1, P)$. In particular, the computation of a system of representatives for the merge relation (Step 6 of Section 2) involves a finite but unbounded number of queries. Thus we showed that even for non-recursive P (and in case that player 2 wins) that there is a winning strategy which, coded as a set, is Turing reducible to the MSO-theory of $(\mathbb{N}, +1, P)$. We do not know whether this reducibility relation can be sharpened to tt-reducibility (truth-table reducibility; see [Rog67]). It is known that in general the MSO-theory of $(\mathbb{N}, +1, P)$ is tt-reducible – but not

³ The state of the configuration (p, s) is stored in the set by pushing it onto the topmost stack, i.e. we have $push_p(s) \in S_0$.

btt-reducible – to the second jump P'' of P ([Tho78]). So for the constructed winning strategy S we have

 $S \leq_{\mathrm{T}} \mathrm{MSO}$ -theory of $(\mathbb{N}, +1, P) \leq_{\mathrm{tt}} P''$

In the second part of the paper, we considered predicates that can be generated by higher-order pushdown automata (covering a large class of interesting examples) and showed that they can be solved with strategies that are again computable by such automata. In this context, we mention some questions.

- In natural examples, mentioned e.g. at the end of Section 3, the reference to P in the winning condition involves just a bounded look-ahead on P. In our approach a look-ahead is made superfluous by a corresponding computation from the past, which involves a big overhead. Strategies (maybe even finite-state strategies) with bounded look-ahead on P seem to be a natural class, and the range of their applicability should be investigated.
- A related question is to decide when a regular *P*-game where *P* is defined by a higher-order pushdown automaton can be solved with finite-state winning strategies.
- Finally, one can aim at finding more general frameworks than the Caucal hierarchy as considered here, and develop corresponding more general types of winning strategies (that are, however, more restricted than the recursive strategies).

References

- [BL69] R. Büchi and L. Landweber. Solving sequential conditions by finite state strategies. Transactions of the AMS, 138(27):295 – 311, 1969.
- [Car05] A. Carayol. Regular sets of higher-order pushdown stacks. In Proc. MFCS'05, volume 3618 of LNCS, pages 168–179, 2005.
- [Cau02] D. Caucal. On infinite graphs having a decidable monadic theory. In Proc. MFCS'02, volume 2420 of LNCS, pages 165–176, 2002.
- [Chu63] A. Church. Logic, arithmetic, and automata. In Proc. Int. Congr. Math. 1962, pages 23–35, Djursholm, Sweden, 1963. Inst. Mittag-Leffler.
- [CS08] Arnaud Carayol and Michaela Slaats. Positional strategies for higher-order pushdown parity games. In *Mathematical Foundations of Computer Science*, volume 5162 of LNCS, pages 217–228. Springer, 2008.
- [CT02] O. Carton and W. Thomas. The monadic theory of morphic infinite words and generalizations. Technical Report 176 (1): 51-65, Inf. Comput., 2002.
- [CW03] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In *Proc. FSTTCS'03*, volume 2914 of *LNCS*, pages 112–123, 2003.
- [Fra05] S. Fratani. Automates à piles de piles ... de piles. PhD thesis, Université Bordeaux 1, 2005.
- [GS53] D. Gale and F. M. Stewart. Infinite games with perfect information. In Contributions to the Theory of Games, 1953.
- [GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer Verlag, 2002.

- [Hän09] P. Hänsch. Infinite games with parameters. Master's thesis, Lehrstuhl für Informatik 7, RWTH Aachen, Aachen, Germany, 2009.
- [McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. In *Inform. Contr.*, volume 9, pages 521–530, 1966.
- [Rab06] A. Rabinovich. Church synthesis problem with parameters. In CSL, volume 4207 of LNCS, pages 546–561. Springer, 2006.
- [Rab07] A. Rabinovich. Church synthesis problem with parameters. In Logical Methods in Computer Science, volume 3(4:9), pages 1–24, 2007.
- [Rog67] H. Rogers. Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967.
- [RT06] A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural number with unary predicates. In *LNCS*, volume 4207, Berlin, 2006. Springer.
- [Sie73] D. Siefkes. The recursive sets in certain monadic second order fragments of arithmetic. *Archiv mathematischer Logik*, 17, 1975 (submitted 1973).
- [Tho78] W. Thomas. The theory of successor with an extra predicate. Arch. math. Logik, 237:121–132, 1978.