Stochastic Games

Krishnendu Chatterjee

Institute of Science and Technology

MoVeP, Aachen June 28, 2010

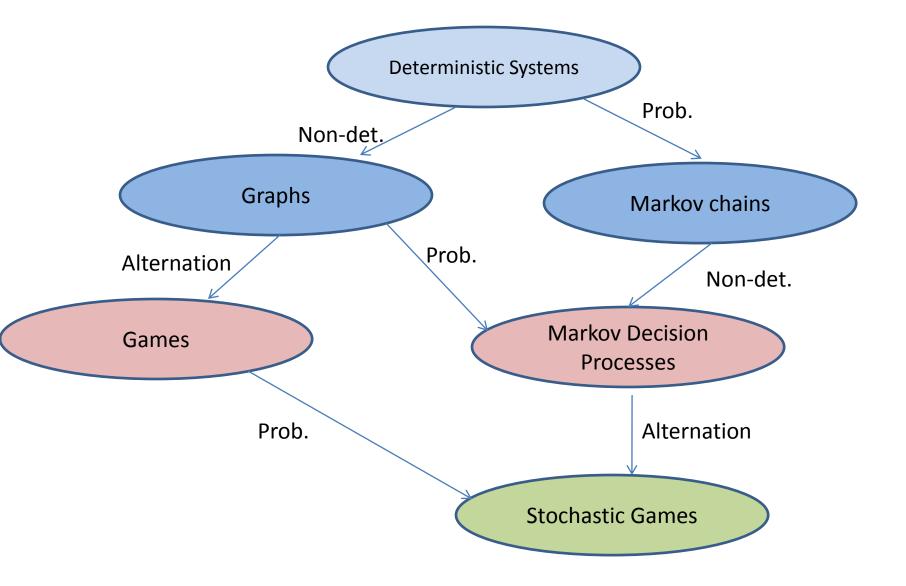
Krishnendu Chatterjee I ST AUSTRIA

 Two-player perfect-information games on graphs with randomness in transitions.

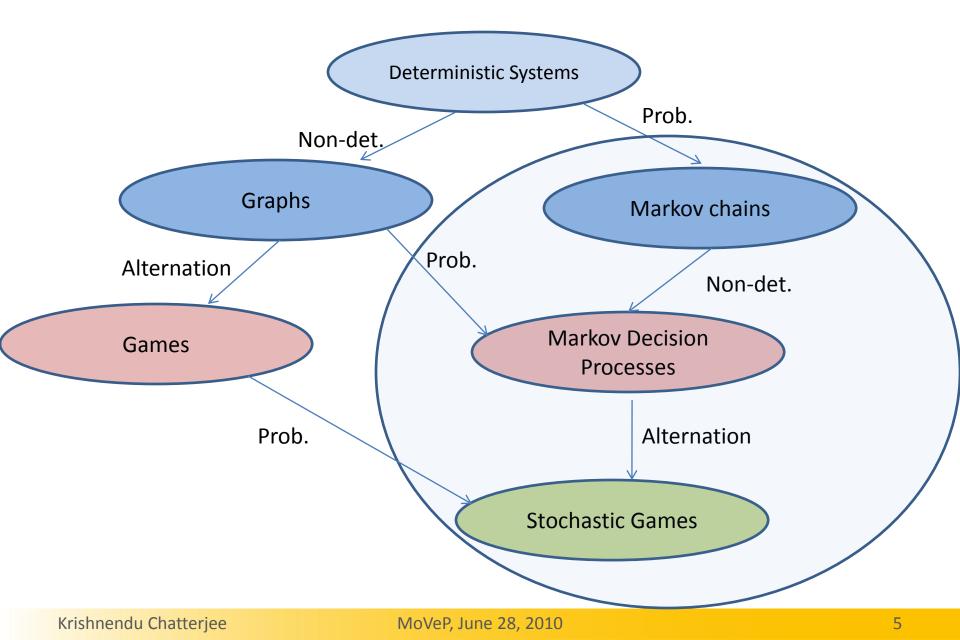
- Various sub-classes
 - Brief discussion of applications.
 - Solution techniques.

- Formal analysis of systems to prove correctness with respect to properties.
- System to game graph
 - Vertices represent states.
 - Edges represent transitions.
 - Paths represent behavior.
 - Players represent various interacting agents.
- Mathematical framework for system analysis.

Stochastic Games

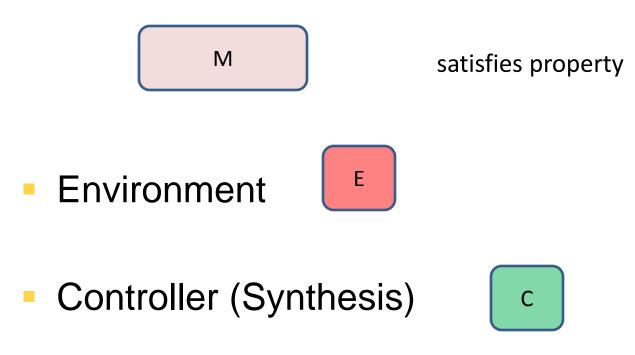


Stochastic Games



Applications: Verification of Systems

Verification of systems



Applications: Verification of Systems

- Verification and synthesis of systems
 - System is fixed and the environment fixed: deterministic systems.
 - System is fixed, but not the environment: Demonic non-determinism.
 - Environment fixed but probabilistically (randomized scheduler): Markov chain.
 - Probabilistic environment and controller: Markov decision process.
 - Controller vs. environment: angelic vs. demonic non-determinism (alternation).

Applications: Systems for Specification

- Synthesis of systems from specification
 - Input/Output signals.
 - Automata over I/O that specifies the desired set of behaviors.
 - Can the input player present input such that no matter how the output player plays the generated sequence of I/O signals is accepted by automata ?
 - Deterministic automata: Games.
 - Some input signals generate probabilistic transition: Stochastic games.

Game Models Applications

- -synthesis [Church, Ramadge/Wonham, Pnueli/Rosner]
- -model checking of open systems
- -receptiveness [Dill, Abadi/Lamport]
- -semantics of interaction [Abramsky]
- -non-emptiness of tree automata [Rabin, Gurevich/ Harrington]
- -behavioral type systems and interface automata [deAlfaro/ Henzinger]
- -model-based testing [Gurevich/Veanes et al.]
- -etc.
- Mathematicians (logic and set theory), Stochastic game theorists, Economists, Computer Scientists, Biologists (evolutionary games).

Properties

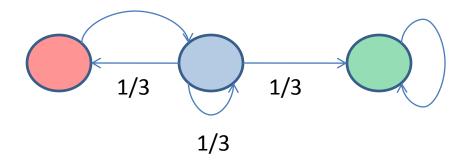
- Properties in verification
 - Reachability to target set.
 - Liveness (Buechi) or repeated reachability.
 - Fairness.
 - Parity objectives: all ω -regular specifications.

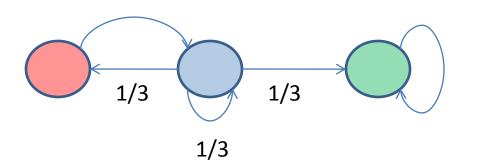
MARKOV CHAINS

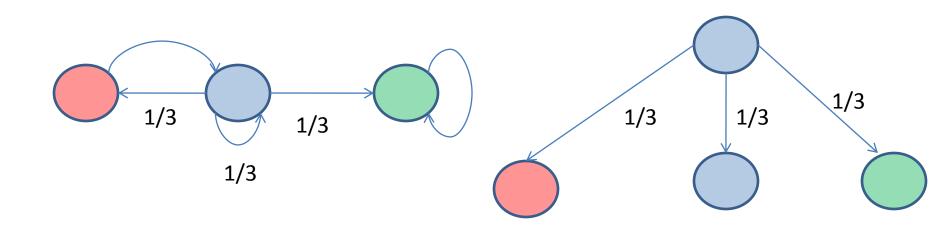
Krishnendu Chatterjee

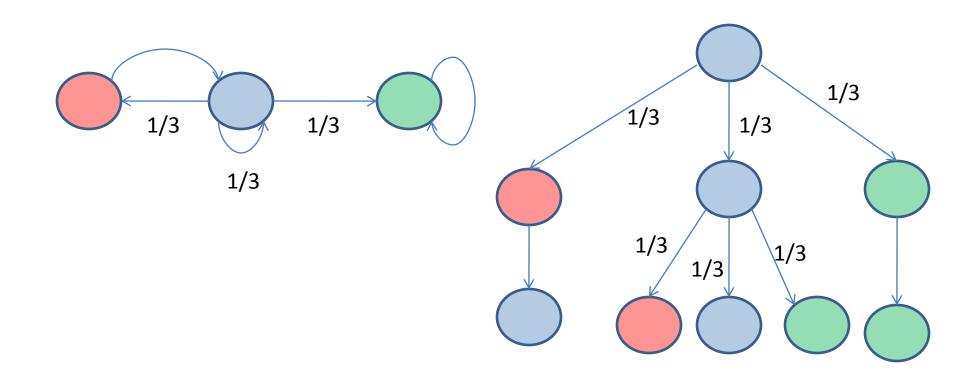
Markov Chains

- Markov chain model: G=((S,E), δ)
- Finite set S of states.
- Probabilistic transition function δ
- $E = \{ (s,t) | \delta(s)(t) > 0 \}$
- The graph (S,E) is useful.









Markov Chain

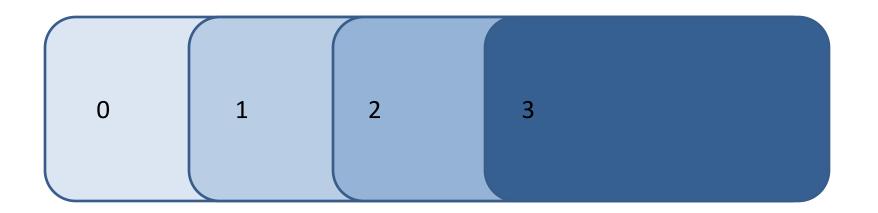
- Properties of interest
 - Target set T: probability to reach the target set.
 - Target set B: probability to visit B infinitely often.

Objectives

- Objectives are subsets of infinite paths, i.e., $\psi \subseteq S^{\omega}$.
- Reachability: set of paths that visit the target T at least once.
- Liveness (Buechi): set of paths that visit the target B infinitely often.
- Parity: given a priority function p: S → {0,1,..., d}, the objective is the set of infinite paths where the minimum priority visited infinitely often is even.

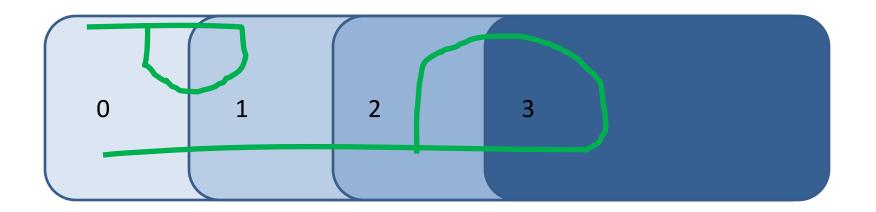
Parity Objectives

 Parity: given a priority function p: S → {0,1,..., d}, the objective is the set of infinite paths where the minimum priority visited infinitely often is even.



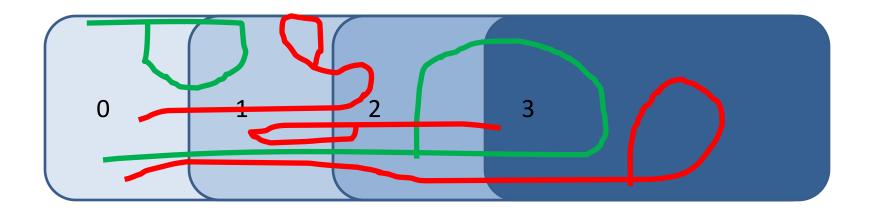
Parity Objectives

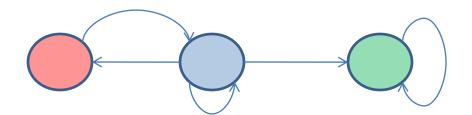
 Parity: given a priority function p: S → {0,1,..., d}, the objective is the set of infinite paths where the minimum priority visited infinitely often is even.



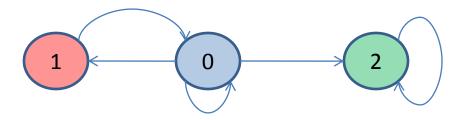
Parity Objectives

 Parity: given a priority function p: S → {0,1,..., d}, the objective is the set of infinite paths where the minimum priority visited infinitely often is even.





- Reachability: starting state is blue.
 - Red: probability is less than 1.
 - Blue: probability is 1.
 - Green probability is 1.
- Liveness: infinitely often visit
 - Red: probability is 0.
 - Blue: probability is 0.
 - Green: probability is 1.



- Parity
 - Blue infinitely often, or 1 finitely often.
 - In general, if priorities are 0,1, ..., 2d, then we require for some $0 \le i \le d$, that priority 2i infinitely often, and all priorities less than 2i is finitely often.

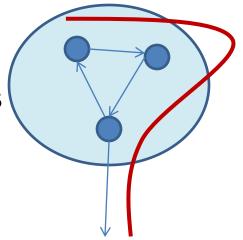
Questions

- Qualitative question
 - The set where the property holds with probability 1.
 - Qualitative analysis.
- Quantitative question
 - What is the precise probability that the property holds.
 - Quantitative analysis.

- Consider the graph of Markov chain.
- Closed recurrent set:
 - Bottom strongly connected component.
 - Closed: No probabilistic transition out.
 - Strongly connected.

- Theorem: Reach the set of closed recurrent set with probability 1.
- Proof.
 - Consider the DAG of the scc decomposition of the graph.
 - Consider a scc C of the graph that is not bottom.
 - Let α be the minimum positive transition prob.
 - Leave C within n steps with prob at least $\beta = \alpha^n$.
 - Stay in C for at least k*n steps is at most $(1-\beta)^k$.
 - As k goes to infinity this goes to 0.

- Theorem: Reach the set of closed recurrent set with probability 1.
- Proof.
 - Path goes out with β .
 - Never gets executed for k times is (1-β)^k. Now let k goto infinity.



- Theorem: Given a closed recurrent set C, for any starting state in C, all states is reached with prob 1, and hence all states visited infinitely often with prob 1.
- Proof. Very similar argument like before.

Qualitative and Quantitative Analysis

- Previous two results are the basis.
- Example: Liveness objective.
 - Compute max scc decomposition.
 - Reach the bottom scc's with prob 1.
 - A bottom scc with a target is a good bottom scc, otherwise bad bottom scc.
 - Qualitative: if a path to a bad bottom scc, not with prob
 1. Otherwise with prob 1.
 - Quantitative: reachability probability to good bottom scc.

Quantitative Reachability Analysis

- Let us denote by C the set of bottom scc's (the quantitative values are 0 or 1). We now define a set of linear equalities. There is a variable x_s for every state s. The equalities are as follows:
 - $x_s = 0$ if s in C and bad bottom scc.
 - $x_s = 1$ if s in C and good bottom scc.
 - $\mathbf{x}_{s} = \sum_{t \in S} \mathbf{x}_{t} * \delta(s)(t)$.
- Brief proof idea: The remaining Markov chain is transient. Matrix algebra det(I-δ)≠ 0.

Markov Chain Summary

	Reachability	Liveness	Parity
Qualitative	Linear time	Linear time	Linear time
Quantitative	Linear equalities (Gaussian elimination)	Linear equalities	Linear equalities

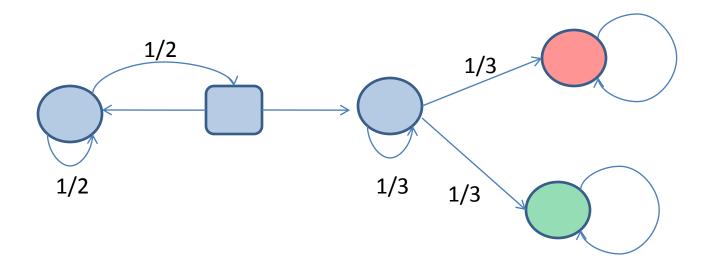
MARKOV DECISION PROCESSES

Krishnendu Chatterjee

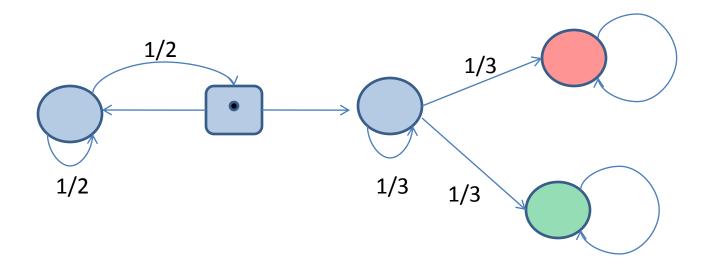
Markov Decision Processes

- Markov decision processes (MDPs)
 - Non-determinism.
 - Probability.
 - Generalizes non-deterministic systems and Markov chains.
- An MDP G= ((S,E), (S₁, S_P), δ)
 - $\delta : S_P \rightarrow D(S).$
 - For $s \in S_P$, the edge $(s,t) \in E$ iff $\delta(s)(t)>0$.
 - E(s) out-going edges from s, and assume E(s) nonempty for all s.

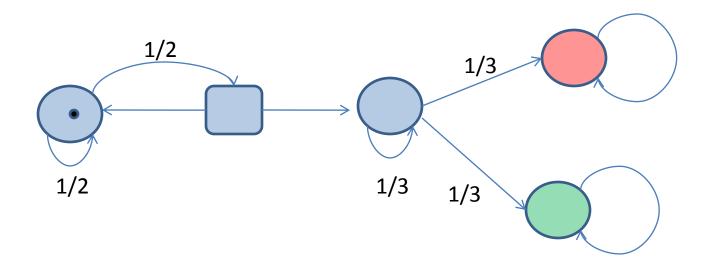
MDP: Example



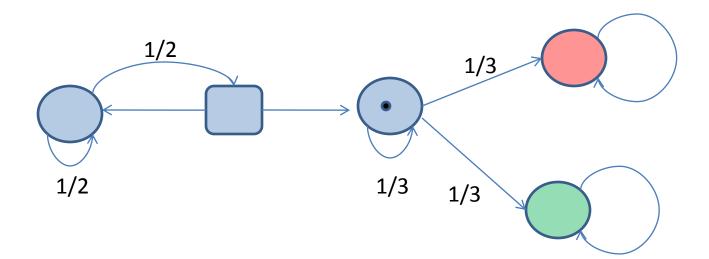
MDP: Example



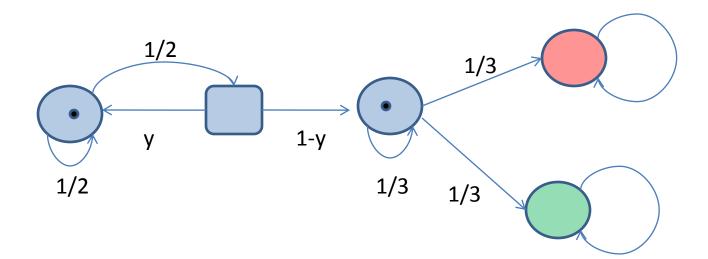
MDP: Example



MDP: Example



MDP: Example



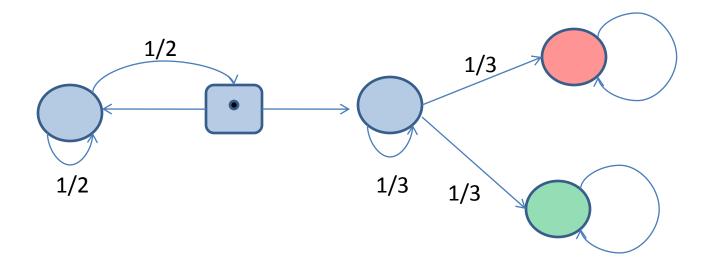
MDP

- Model
- Objectives
- How is non-determinism resolved: notion of strategies. At each stage can be resolved differently and also probabilistically.

Strategies

- Strategies are recipe how to move tokens or how to extend plays. Formally, given a history of play (or finite sequence of states), it chooses a probability distribution over out-going edges.
 - $\sigma: S^* S_1 \to D(S).$

MDP: Strategy Example



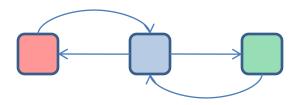
Token for k-th time: choose left with prob 1/k and right (1-1/k).

Krishnendu Chatterjee

Strategies

- Strategies are recipe how to move tokens or how to extend plays.
 Formally, given a history of play (or finite sequence of states), it chooses a probability distribution over out-going edges.
 - $\sigma: \mathbf{S}^* \mathbf{S}_1 \to \mathbf{D}(\mathbf{S}).$
- History dependent and randomized.
- History independent: depends only current state (memoryless or positional).
 - $\sigma: \mathsf{S}_1 \to \mathsf{D}(\mathsf{S})$
- Deterministic: no randomization (pure strategies).
 - $\sigma: S^* S_1 \to S$
- Deterministic and memoryless: no memory and no randomization (pure and memoryless and is the simplest class).
 - $\sigma: \mathbf{S}_1 \to \mathbf{S}$

Example: Cheating Lovers



Visit green and red infinitely often.

Pure memoryless not good enough.

Strategy with memory: alternates.

Randomized memoryless: choose with uniform probability.

Certainty vs. probability 1.

Values in MDPs

- Value at a state for an objective ψ
 - Val(ψ)(s) = sup_{σ} Pr_{s^{σ}(ψ).}
- Qualitative analysis
 - Compute the set of almost-sure (prob 1) winning states (i.e., set of states with value 1).
- Quantitative analysis
 - Compute the value for all states.

Qualitative and Quantitative Analysis

- Qualitative analysis
 - Liveness (Buechi) and reachability as a special case.
- Reduction of quantitative analysis to quantitative reachability.
- Quantitative reachability.

Qualitative Analysis for Liveness

- An MDP G, with a target set B.
- Set of states such that there is a strategy to ensure that B is visited infinitely often with probability 1.
- We will show pure memoryless is enough.
- The generalization to parity (left as an exercise).

Attractor

- Random Attractor for a set U of states.
- $U_0 = U$.

$$\begin{array}{ll} & U_{i+1} = U_i \cup \{s \in S_1 \mid E(s) \subseteq U_i\} \\ & \cup \{s \in S_P \mid E(s) \cap U_i \neq \emptyset\}. \end{array}$$

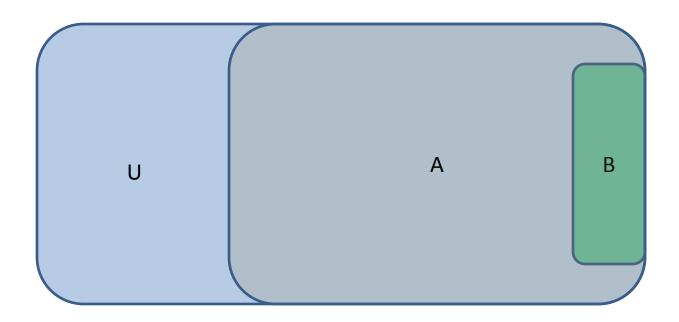
From U_{i+1} no matter what is the choice, U_i is reached with positive probability. By induction U is reached with positive probability.

Attractor

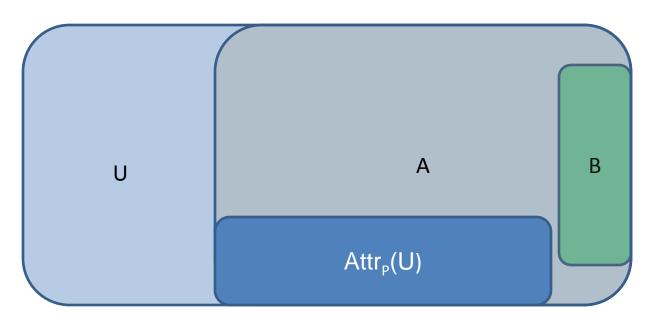
Attr_P(U) = $\cup_{i \ge 0} U_i$.

- Attractor lemma: From Attr_P(U) no matter the strategy of the player (history dependent, randomized) the set U is reached with positive probability.
- Can be computed in O(m) time (m number of edges).
- Thus if U is not in the almost-sure winning set, then Attr_P(U) is also not in the almost-sure winning set.

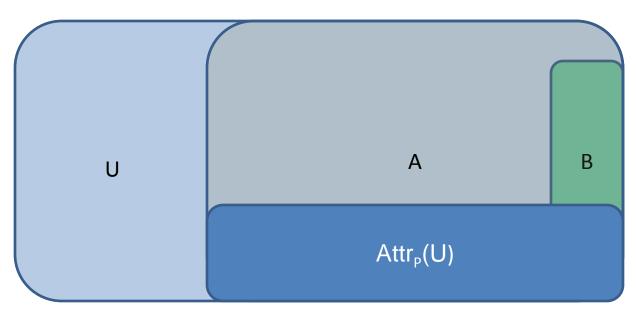
 Compute simple reachability to B (exist a path) in the graph of the MDP (S,E). Let us call this set A.



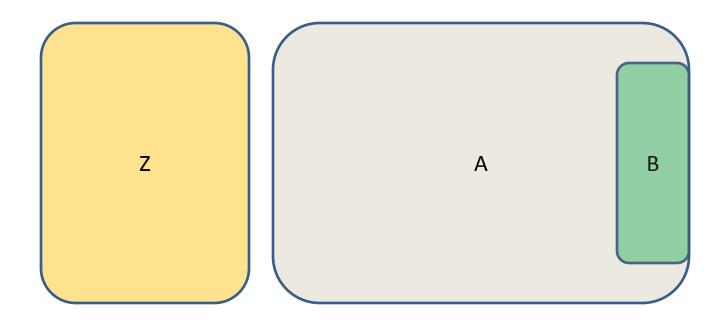
- Let U= S \ A. Then there is not even a path from U to B. Clearly, U is not in the almost-sure set.
- By attractor lemma can take Attr_P(U) out and iterate.



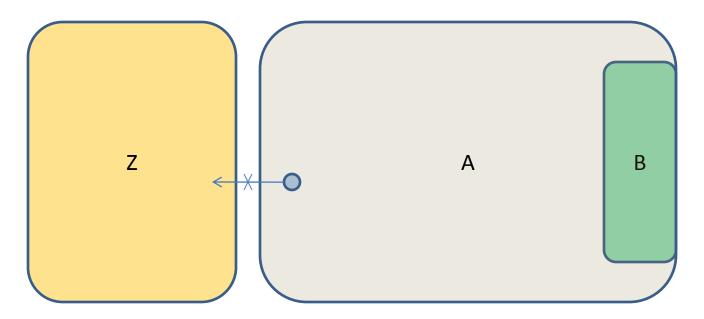
Attr_P(U) may or may not intersect with B.



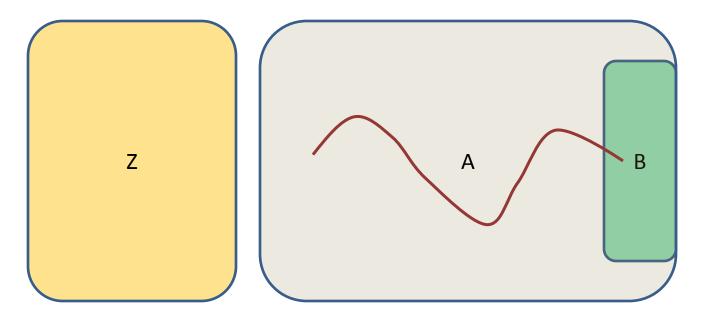
- Iterate on the remaining sub-graph.
- Every iteration what is removed is not part of almostsure winning set.
- What happens when the iteration stops.



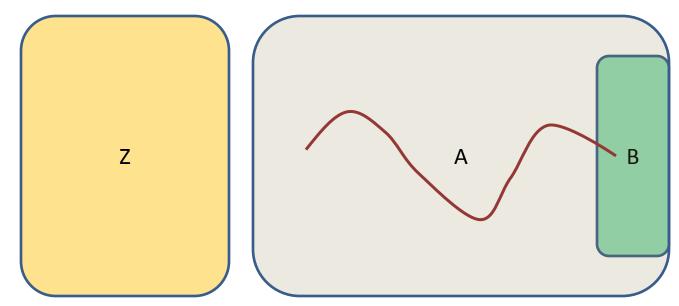
- The iteration stops. Let Z be the set of states removed overall iterations.
- Two key properties.



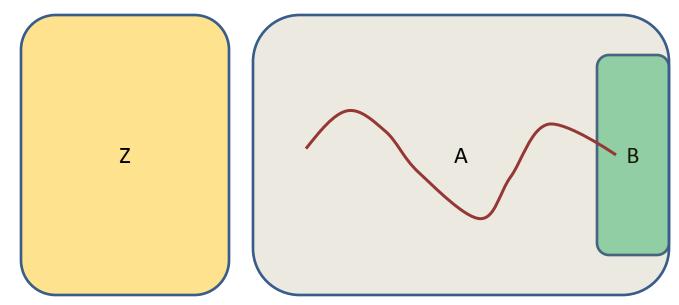
- The iteration stops. Let Z be the set of states removed overall iterations.
- Two key properties:
 - No probabilistic edge from outside to Z.



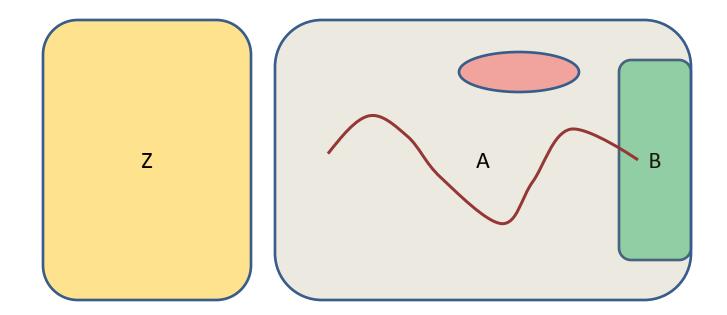
- The iteration stops. Let Z be the set of states removed overall iterations.
- Two key properties:
 - No probabilistic edge from outside to Z.
 - From everywhere in A (the remaining graph) path to B.



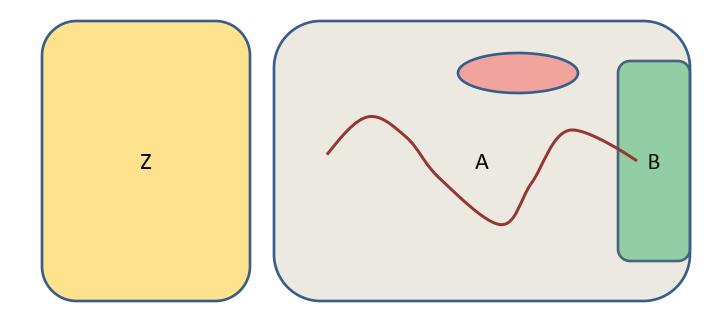
- Two key properties:
 - No probabilistic edge from outside to Z.
 - From everywhere in A (the remaining graph) path to B.
- Fix a memoryless strategy as follows:
 - In A \setminus B: shorten distance to B. (Consider the BFS and choose edge).
 - In B: stay in A.



- Fix a memoryless strategy as follows:
 - In A \setminus B: shorten distance to B. (Consider the BFS and choose edge).
 - In B: stay in A.
- Argue all bottom scc's intersect with B. By Markov chain theorem done.



- Argue all bottom scc's intersect with B. By Markov chain theorem done.
- Towards contradiction some bottom scc that does not intersect.
 - Consider the minimum BFS distance to B.



- Argue all bottom scc's intersect with B. By Markov chain theorem done.
- Towards contradiction some bottom scc that does not intersect.
 - Consider the minimum BFS distance to B.
 - Case 1: if a state in S_P, all edges must be there and so must be the one with shorter distance.
 - Case 2: if a state in S₁, then the successor chosen has shorter distance.
 - In both cases we have a contradiction.

- Time complexity is O(n m).
- Pure memoryless almost-sure winning strategy.
- Exercise: extend it to parity with time complexity O(n m d).
- We are now done with qualitative analysis. We will now argue how to reduce quantitative analysis to quantitative reachability.

Quantitative Parity to Quantitative Reachability

- End-components: An end-component generalizes both scc and closed recurrent set. A set U is an end-component if the following properties hold:
 - U is strongly connected.
 - U is closed (no probabilistic edge out).
- Note that player 1 edges may leave the endcomponent.
- Why is end-component important: it allows us to reason about infinite behaviors.

End Component Property

- End-component property: For an MDP and for all strategies, with probability 1 the set of states visited infinitely often is an end-component.
- Generalizes the scc for graphs and closed recurrent set for Markov chains.
- Proof:
 - Shape of the proof very similar to closed recurrent set.
 - We need to show that if a set U is not an end-component, then cannot be visited infinitely often with positive probability.
 - Assume towards contradiction that there is such a set U.

End Component Property

- End-component property: For an MDP and for all strategies, with probability 1 the set of states visited infinitely often is an endcomponent.
- Proof:
 - We need to show that if a set U is not an end-component, then cannot be visited infinitely often with positive probability.
 - Assume towards contradiction that there is such a set U.
 - U must be strongly connected.
 - Since U is not end-component, some probabilistic state s with an edge to t going out of U with probability α .
 - Hence the probability that s is visited infinitely often, but the edge to t is taken finitely often is 0.
 - The result follows.

Winning End-component

- An end-component U is winning if the minimum priority of U is even.
- From end-component property for any strategy the probability to satisfy parity is the probability to reach the winning end-components.
- In winning end-components pure memoryless almost-sure winning strategy exists.
 - Proof: Choose successor to shorten distance to the minimum even priority state.

Quantitative Parity to Quantitative Reachability

- The probability to satisfy is the probability to reach winning end-components.
- In winning end-components pure memoryless almost-sure strategy.
- Winning end-components are included in the almost-sure winning set.
- Hence we need quantitative reachability to almost-sure winning set.
- We now need the quantitative reachability to complete the argument.

- An MDP G, and a target set T.
- Val(Reach(T))(s) = $\sup_{\sigma} Pr_s^{\sigma}(Reach(T))$.
- v(s) for abbreviation.
- Two properties:
 - Property 1: For $s \in S_P$ we have $v(s) = \sum_{t \in S} v(t)^* \delta(s)(t)$.
 - Property 2: For $s \in S_1$ we have v(s) = max { $v(t) \mid t \in E(s)$ }.

Proof of Property 2

- Inequality 1: $v(s) \ge max\{v(t) \mid t \in E(s)\}$
 - Fix ε>0.
 - Let t* be the arg max.
 - From s choose t*, and then an ε optimal strategy from t* to ensure value at least v(t*)-ε.
 - As ϵ >0 is arbitrary, the result follows.
- Inequality 2. $v(s) \le max\{v(t) \mid t \in E(s)\}$
 - We have

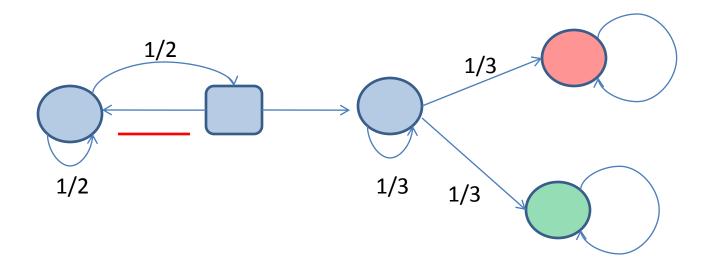
•
$$v(s) \leq \sup_{\mu} \sum_{t \in S} v(t)^* \mu(t) \leq \max \{v(t) \mid t \in E(s)\},\$$

where $\mu \in D(E(s)).$

A Simple Attempt

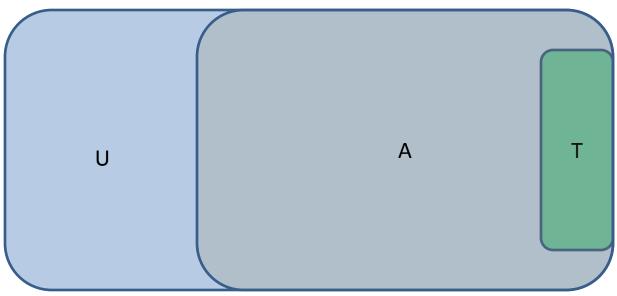
- For a state s choose a successor that achieves the maximum.
- However this simple construction is not sufficient.

MDP: Simple Fails

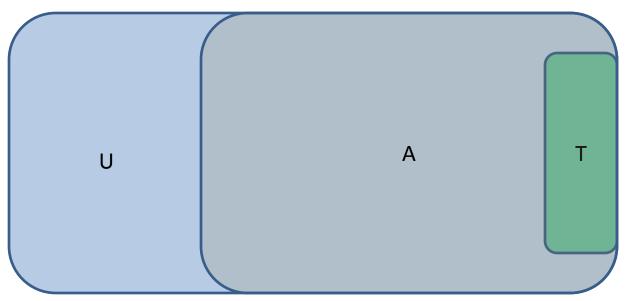


In all blue states the value is $\frac{1}{2}$.

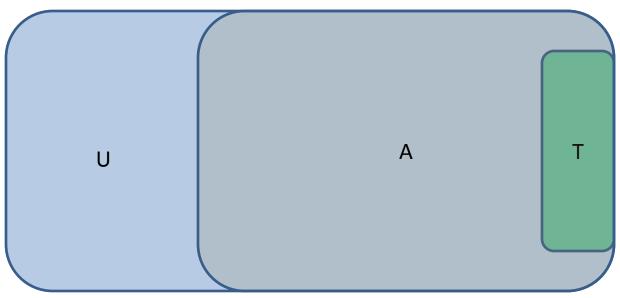
However the choice of red edge is bad.



- Original MDP is connected.
- Compute simple reachability to T.
- From U, there is no path so value is 0.
- From A, the value is positive everywhere as there is a path.



- From U, there is no path so value is 0.
- From A, the value is positive everywhere as there is a path.
- Retain only the edges that attains the max in A (remove all the other). Make U and T absorbing.
- Easy to show that there is still path to T from A.
- Choose the edge that shortens distance to T.



- Retain only the edges that attains the max in A (remove all the other). Make U and T absorbing.
- Easy to show that there is still path to T from A.
- Choose the edge that shortens distance to T.
- Markov chain where all closed recurrent states are U or T.
- The values v(s) satisfies the Markov chain equality. Hence the memoryless strategy achieves v(s).

Quantitative Reachability

- An MDP G, and a target set T.
- Val(Reach(T))(s) = $\sup_{\sigma} Pr_s^{\sigma}(Reach(T))$.
- Existence of pure memoryless optimal strategies.
- Algorithm: Linear programming. Variable x_s for all states s.

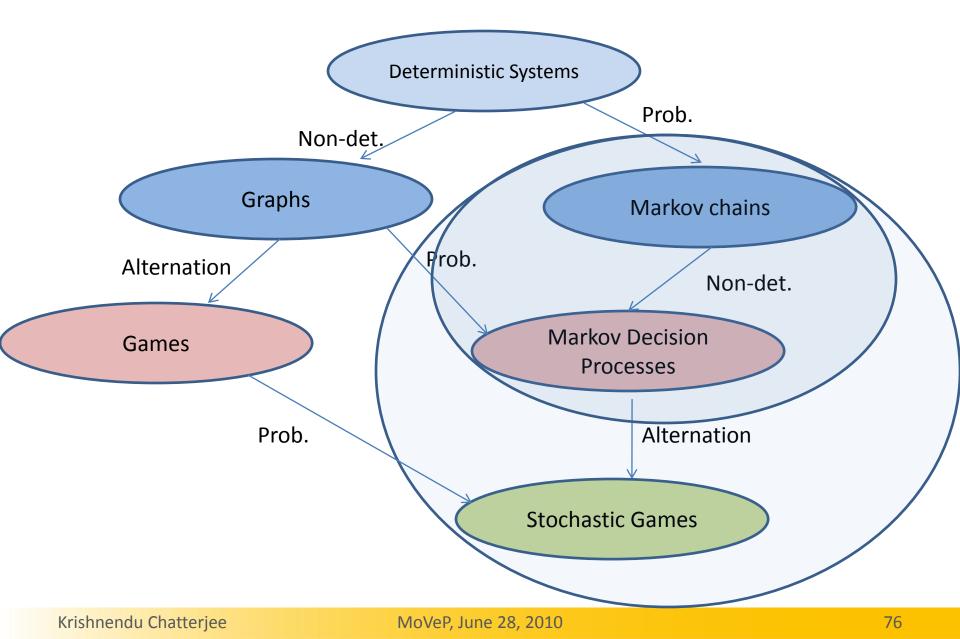
Quantitative Reachability

- Algorithm: Linear programming. Variable x_s for all states s.
 - $x_s = 0$ $s \in U$
 - $x_s = 1$ $s \in T$
 - $\mathbf{x}_{s} = \sum_{t \in S} \mathbf{x}_{t} * \delta(s)(t)$ $s \in S_{P}$
 - $\textbf{x}_s = \max_{t \in \mathsf{E}(s)} x_t \qquad s \in \mathsf{S}_1.$
- The above optimization to linear program
 - Objective function: min $\sum_{t \in S} x_t$
 - $\mathbf{x}_{\mathbf{s}} \geq \mathbf{x}_{\mathbf{t}}$ $\mathbf{s} \in \mathbf{S}_{\mathbf{1}}, \mathbf{t} \in \mathbf{E}(\mathbf{s}).$

MDP Summary

	Reachability	Liveness	Parity
Qualitative	O(n m)	O(n m)	O(n m d)
Quantitative	Linear programming	Linear programming	Linear programming

Stochastic Games

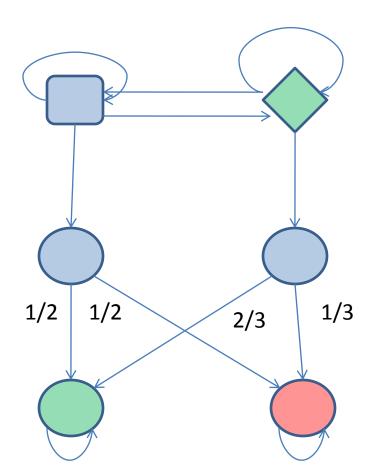


Stochastic Games

Stochastic games

- Non-determinism: angelic vs. demonic nondeterminism (alternation).
- Probability.
- Generalizes non-deterministic systems and Markov chains, alternating games, MDPs.
- An MDP G= ((S,E), (S₁, S₂,S_P), δ)
 - $\delta : S_P \rightarrow D(S).$
 - For $s \in S_P$, the edge $(s,t) \in E$ iff $\delta(s)(t)>0$.
 - E(s) out-going edges from s, and assume E(s) nonempty for all s.

Stochastic Game



Example of stochastic game.

Objective for player 1 is to visit green infinitely often

Strategies

 Strategies are recipe how to move tokens or how to extend plays. Formally, given a history of play (or finite sequence of states), it chooses a probability distribution over out-going edges.

•
$$\sigma: S^* S_1 \to D(S).$$

•
$$\pi: S^* S_2 \rightarrow D(S).$$

Strategies

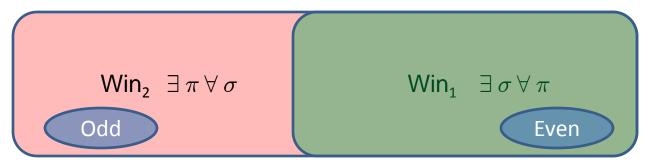
- Strategies are recipe how to move tokens or how to extend plays. Formally, given a history of play (or finite sequence of states), it chooses a probability distribution over out-going edges.
 - $\sigma: \mathsf{S}^* \mathsf{S}_1 \to \mathsf{D}(\mathsf{S}).$
- History dependent and randomized.
- History independent: depends only current state (memoryless or positional).
 - $\sigma: S_1 \rightarrow D(S)$
- Deterministic: no randomization (pure strategies).
 - $\sigma : \mathsf{S}^* \: \mathsf{S}_1 \to \mathsf{S}$
- Deterministic and memoryless: no memory and no randomization (pure and memoryless and is the simplest class).
 - $\sigma: \mathbf{S}_1 \to \mathbf{S}$
- Same notations for player 2 strategies π .

Values in Stochastic Games

- Value at a state for an objective ψ
 - Val(ψ)(s) = sup_{σ} inf_{π} Pr_{s^{σ,π}(ψ).}
- Qualitative analysis
 - Compute the set of almost-sure (prob 1) winning states (i.e., set of states with value 1).
- Quantitative analysis
 - Compute the value for all states.
- Determinacy: the order of sup inf can be exchanged.

Non-Stochastic Games

- There are no probabilistic states.
- Non-stochastic games with parity objectives
 - Values only 0 or 1.
 - Pure memoryless winning strategies exist.
 - Once a pure memoryless strategy is fixed all cycles winning.

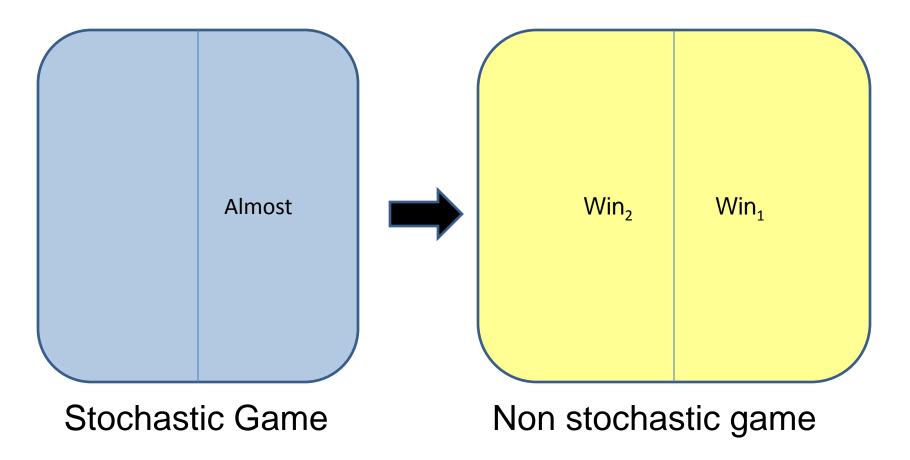


Qualitative and Quantitative Analysis

- Qualitative analysis
 - Reduction to games without probability.
 - Use existence of pure memoryless strategies in games with probability for parity objectives.
 - Show it for Liveness and can be extended to parity.
- Quantitative analysis
 - Combine notion of qualitative and local optimality for quantitative optimality.

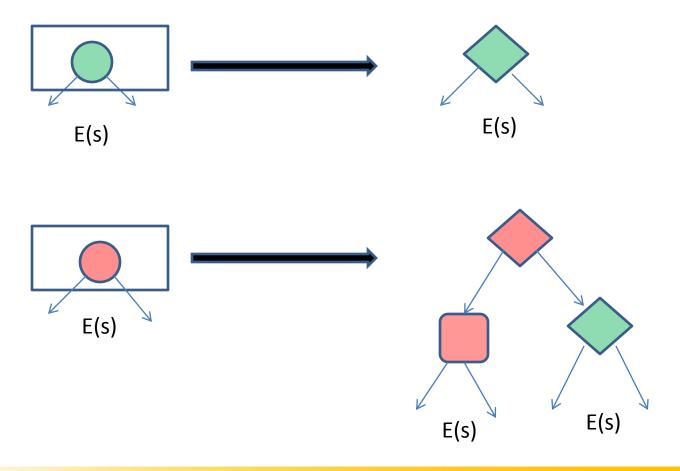
Qualitative Analysis

Reduction



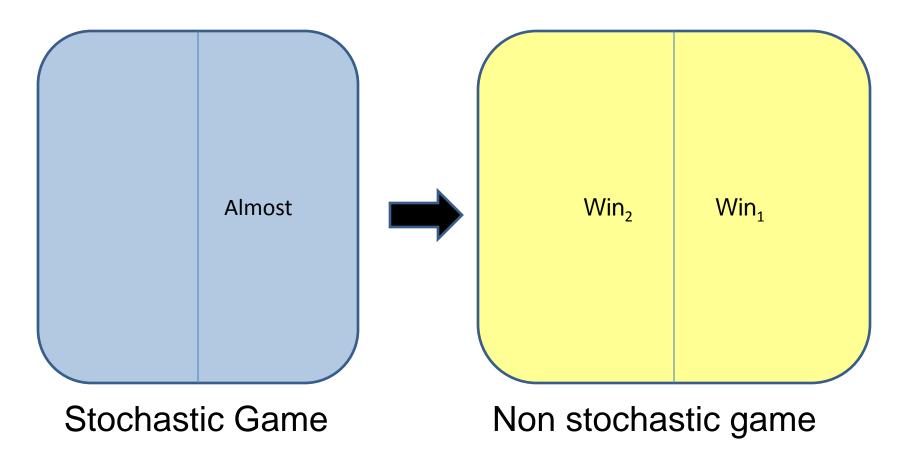
Reduction

 Replace every probabilistic state by two-player gadget. Illustrate it for Liveness.



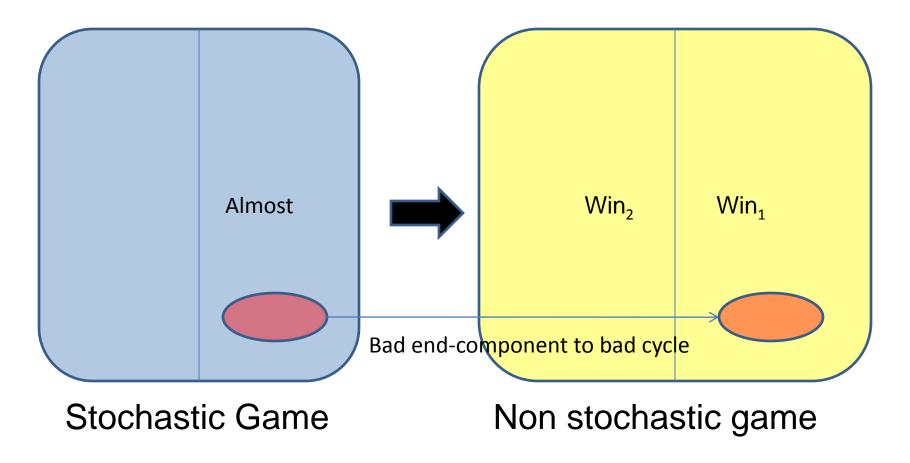
Qualitative Analysis

Reduction: the end-components are winning.



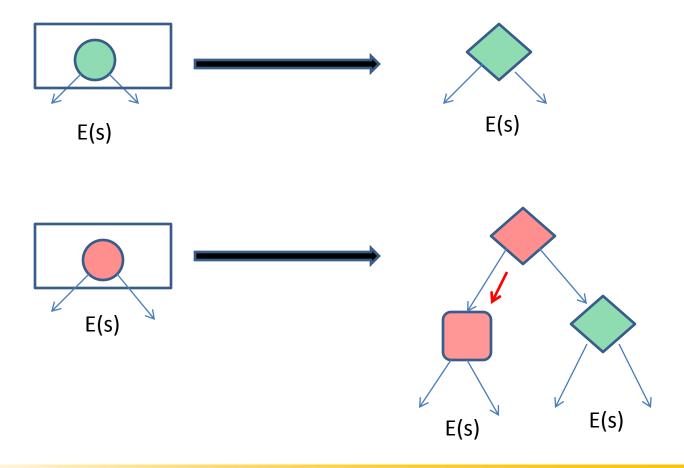
Qualitative Analysis

Reduction: the end-components are winning.



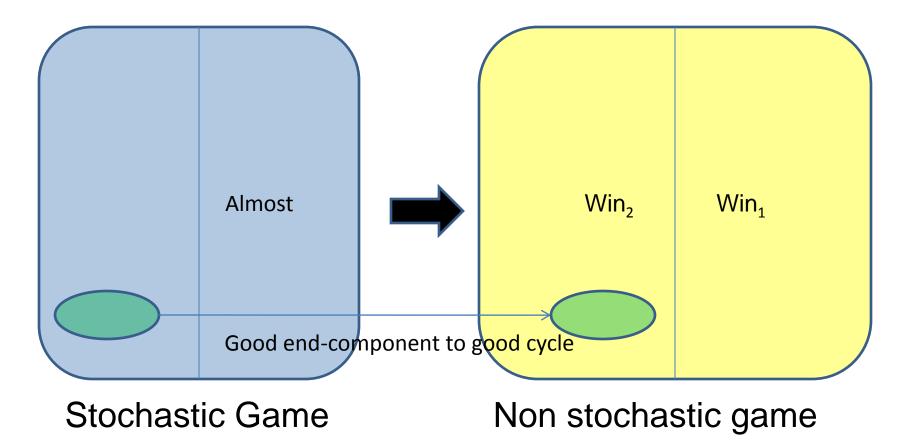
Reduction

Choice in the gadget



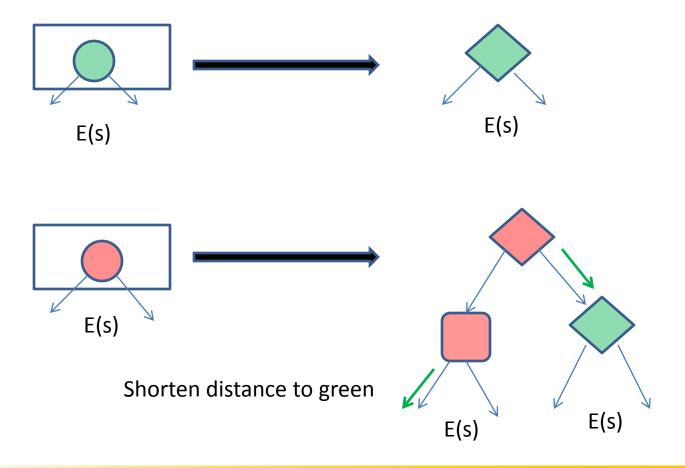
Qualitative Analysis

Reduction: the end-components are winning.



Reduction

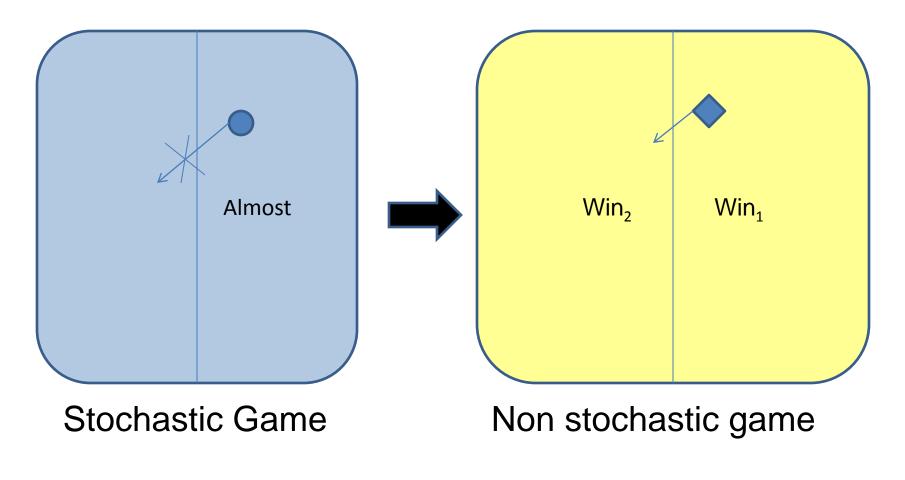
Choice in the gadget



Krishnendu Chatterjee

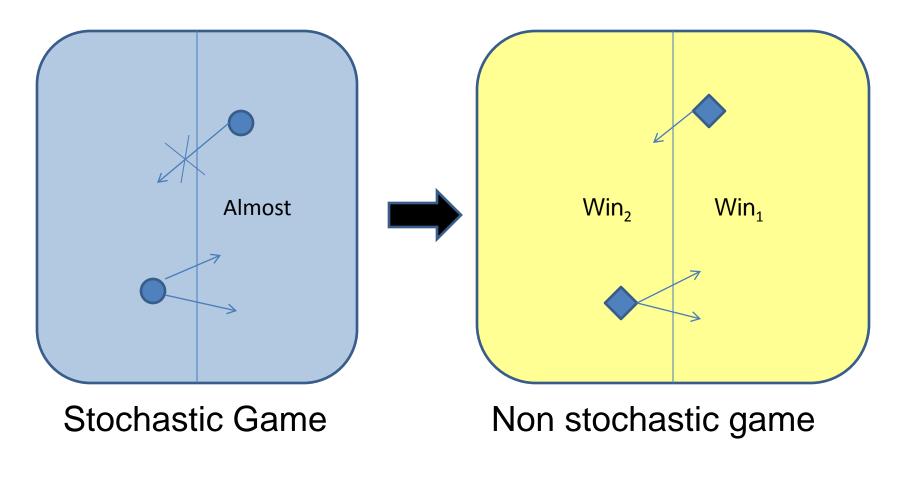
Qualitative Analysis

Reduction: the end-components are winning.



Qualitative Analysis

Reduction: the end-components are winning.



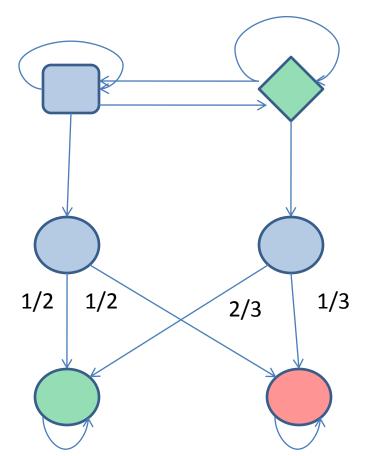
Reduction

- Gadget based reduction can be extended to parity.
- Qualitative analysis
 - Pure memoryless almost-sure strategies exists.
 - Linear time reduction to non-stochastic games.
 - Same complexity: NP \cap coNP.
 - All algorithms can be used.

Quantitative Analysis

- Unlike MDPs, we cannot do the following:
 - Compute almost-sure winning states.
 - Compute quantitative reachability to almost-sure winning states.
 - We illustrate with an example.

Stochastic Game



Example of stochastic game.

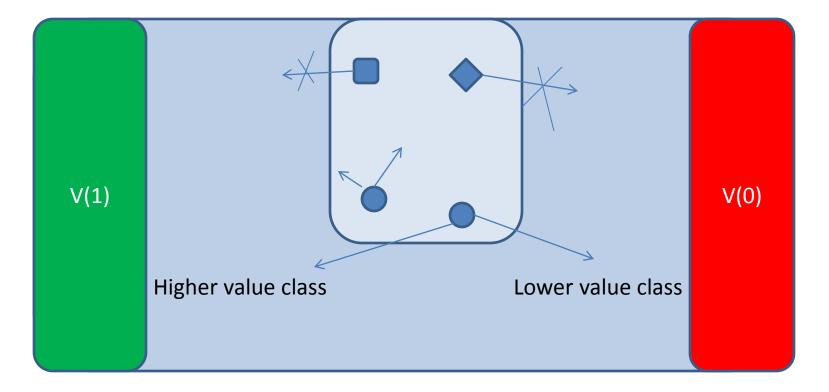
Objective for player 1 is to visit green infinitely often

Cannot ensure to reach green absorbing with prob 2/3.

Quantitative Analysis

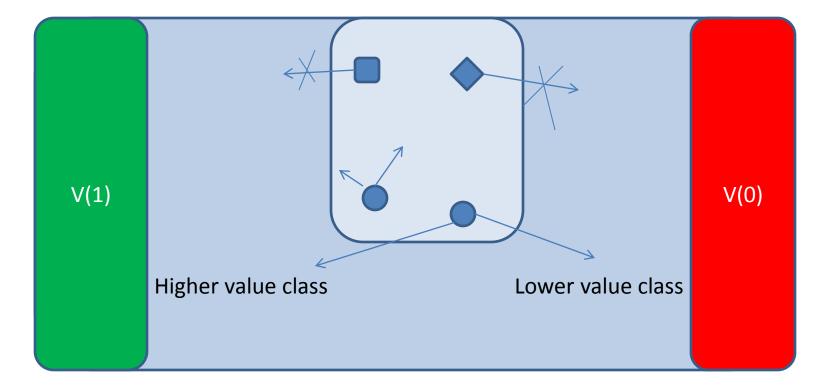
- Quantitative optimality
 - Local optimality
 - Qualitative optimality
- Value class: the set of states with same value.
 V(r) is the set of states with value r.

Value Class Property



Krishnendu Chatterjee

Value Class: Boundary Probabilistic States



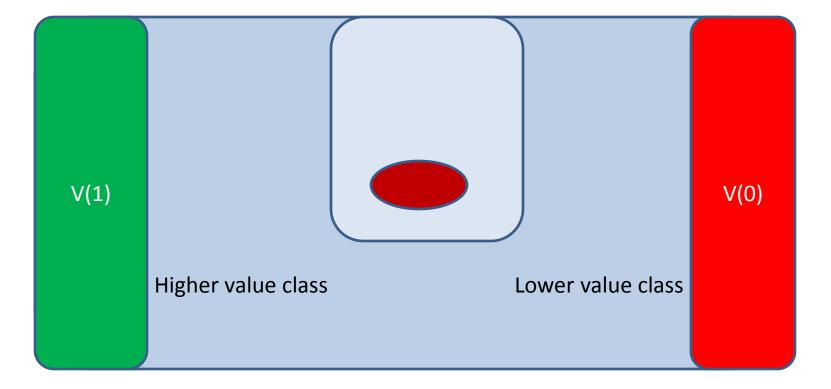
Value Class Reduction

- Remove edges going out to lower value class (local optimality).
- Change boundary probabilistic states to winning states for player 1.
- Claim: In this sub-game player 1 wins almostsurely everywhere.

Sub-game Qualitative Optimality

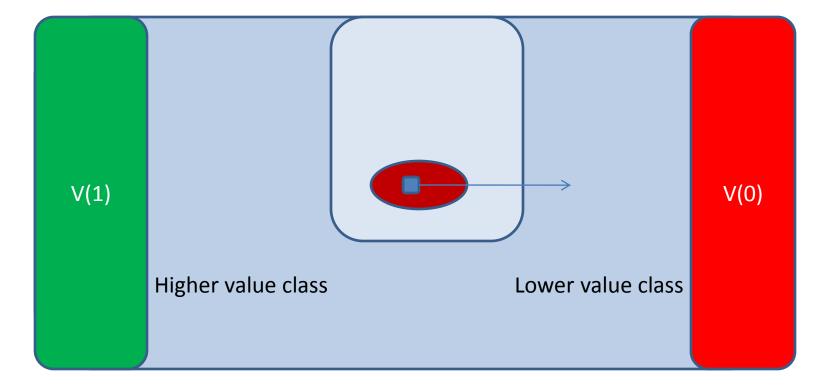
- Claim: Player 1 wins almost-surely.
- Proof: Suppose not.
 - Then player 2 wins with positive probability somewhere.
 - Player 2 wins almost-surely somewhere.
 - Player 1 if stays in the value class loses with probability 1 or else jumps to a lower value class.
 - Contradiction.

Value Class: Boundary Probabilistic States



Krishnendu Chatterjee

Value Class: Boundary Probabilistic States



Krishnendu Chatterjee

Value Class Property

- In value classes if we assume boundary probabilistic vertices winning for player 1 then player 1 wins almost surely.
- Conditional almost-sure winning strategies.
- Stitching lemma: Compose them to get a optimal strategy.

Stitching Lemma

- Proof idea:
 - If the game stays in some value class player 1 wins with probability 1.
 - Else it leaves the value class through the boundary probabilistic vertex or goes to a higher value class.
 - Invoke sub-martingale Theorem or use results from MDPs.

Quantitative Analysis

- Pure memoryless optimal strategies exist.
- Complexity bound
 NP ∩ coNP.
- Algorithms: Strategy improvement algorithms, uses qualitative algorithms and local optimality.

Stochastic Games Summary

	Reachability	Liveness	Parity
Qualitative	O(n m)	O(n m)	NP ∩ coNP Linear reduction to non-stochastic parity
Quantitative	NP ∩ coNP	NP ∩ coNP	NP ∩ coNP

Summary and Messages

Markov chains

- Qualitative: Linear time algorithm through closed recurrent states (bottom scc's).
- Quantitative analysis: Linear equalities, Gaussian elimination.

MDPs

- Qualitative: Iterative algorithm.
- Quantitative: Reduction to quantitative reachability using endcomponents.
- Quantitative reachability: Linear programming.

Stochastic games

- Qualitative: Reduction to non-stochastic games.
- Quantitative: Qualitative and local optimality.

Extensions

- Perfect-information turn-based finite state stochastic games
 - Infinite state games: pushdown games, timed games.
 - Concurrent games: simultaneous interaction.
 - Imperfect-information games.

CONCURRENT GAMES

Krishnendu Chatterjee

Games on Graphs

Games on graphs:

- 1. Turn-based:
 - Chess.
 - Tic-tac-toe.

- 2. Concurrent:
 - Penalty Shoot-out.
 - Rock-paper-scissor.

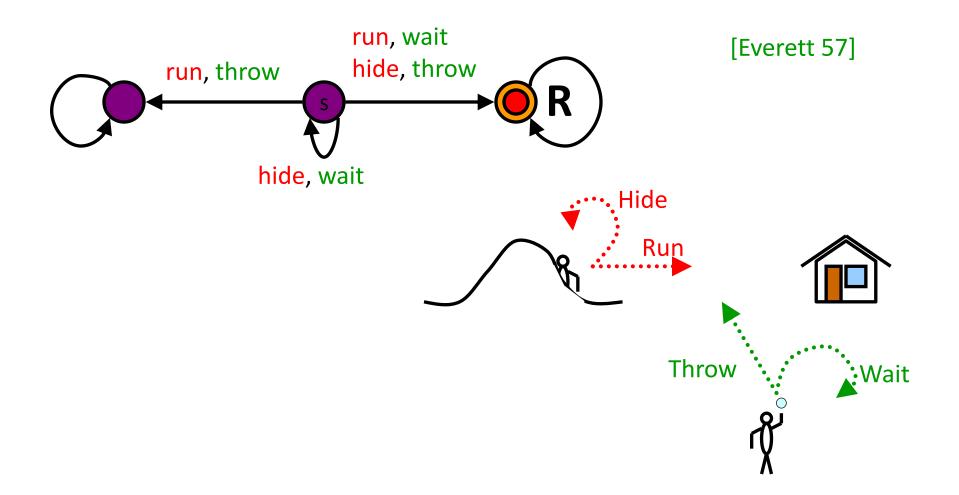
Concurrent Game Graphs

A concurrent game graph is a tuple $G = (S, M, \Gamma_1, \Gamma_2, \delta)$

- S is a finite set of states.
- M is a finite set of moves or actions.
- $\Gamma_i: S \to 2^M \setminus \emptyset$ is an action assignment function that assigns the non-empty set $\Gamma_i(s)$ of actions to player i at s, where $i \in \{1,2\}$.

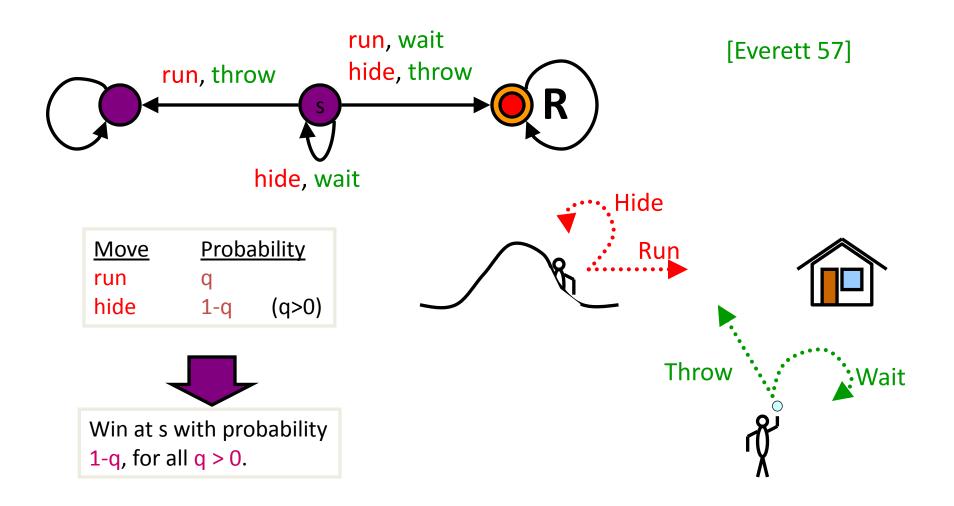
• δ : S × M × M \rightarrow Dist(S), is a probabilistic transition function that given a state and actions of both players gives a probability distribution of the next state.

An Example (Deterministic Transition)

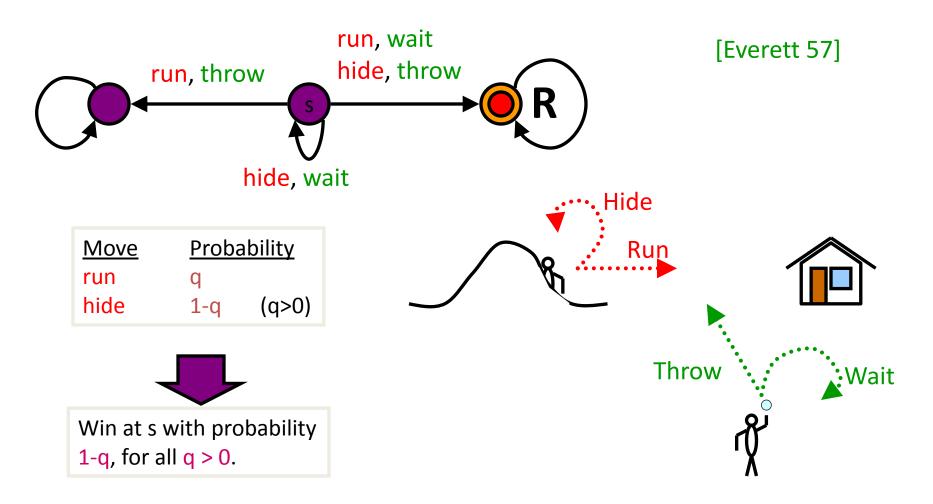


Krishnendu Chatterjee

Concurrent reachability games



Concurrent reachability games



Player 1 cannot achieve v(s) = 1, only v(s) = 1-q for all q > 0.

MoVeP, June 28, 2010

Concurrent Games

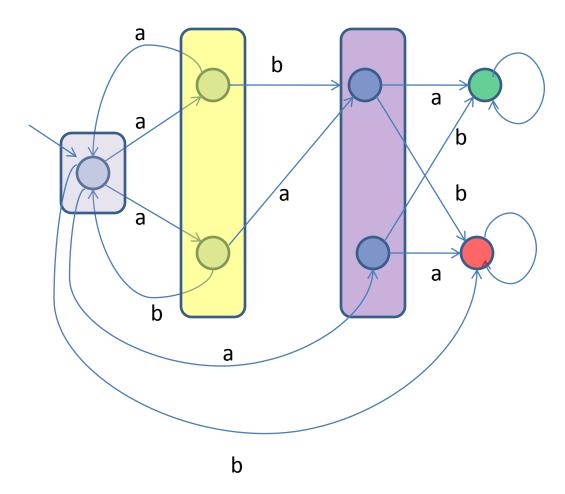
Strategies

- Require randomization.
- May not be optimal.
- Only ϵ -optimal, for ϵ >0.
- For liveness requires infinite memory.
- Values can be irrational for concurrent deterministic reachability games.
- Qualitative and quantitative analysis still decidable
 - Qualitative analysis is NP \cap coNP.
 - Quantitative analysis is PSPACE.

PARTIAL-INFORMATION GAMES

Krishnendu Chatterjee

Partial-information Games



In starting play a.

In yellow play a and b at random. In purple:

- if last was yellow then a
- if last was starting, then b.

Requires both randomization and memory

Partial-information Games

Strategies

- Require randomization.
- May not be optimal.
- Only ϵ -optimal, for ϵ >0.
- For liveness requires infinite memory.
- More complicated than concurrent games.
- Quantitative analysis
 - Undecidable.
- Qualitative analysis
 - Reachability, Liveness: EXPTIME-complete.
 - Parity: Undecidable.

Conclusion

- Perfect-information stochastic games
 - Applications: verification and synthesis of stochastic reactive systems.
 - Markov chains, MDPs and stochastic games with parity objectives.
- Glimpses of the world of games beyond.

References

- Applications and connections:
 - Church 62, Pnueli-Rosner 89, Ramadge-Wonham 87, Courcoubetis-Yannakakis 95, Thomas Handbook 97, and many more.
- Markov chains:
 - Book of Kemeny
- Markov Decision Processes:
 - Book of Filar Vrieze.
 - Probabilistic verification: Courcoubetis-Yannakakis.
 - PhD Thesis of deAlfaro.
- Stochastic games
 - Condon 92, 93.
 - PhD Thesis of Chatterjee

Thank you !

Krishnendu Chatterjee

MoVeP, June 28, 2010