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Stochastic Games

 Two-player perfect-information games on graphs

with randomness in transitions.

 Various sub-classes

 Brief discussion of applications.

 Solution techniques.
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System Analysis

 Formal analysis of systems to prove correctness
with respect to properties.

 System to game graph
 Vertices represent states.

 Edges represent transitions.

 Paths represent behavior.

 Players represent various interacting agents.

 Mathematical framework for system analysis.
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Applications: Verification of Systems

 Verification of systems

 Environment

 Controller (Synthesis)

M satisfies property

E

C
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Applications: Verification of Systems

 Verification and synthesis of systems

 System is fixed and the environment fixed: deterministic systems.

 System is fixed, but not the environment: Demonic non-determinism.

 Environment fixed but probabilistically (randomized scheduler):

Markov chain.

 Probabilistic environment and controller: Markov decision process.

 Controller vs. environment: angelic vs. demonic non-determinism

(alternation).
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Applications: Systems for Specification

 Synthesis of systems from specification

 Input/Output signals.

 Automata over I/O that specifies the desired set of
behaviors.

 Can the input player present input such that no matter how
the output player plays the generated sequence of I/O
signals is accepted by automata ?

 Deterministic automata: Games.

 Some input signals generate probabilistic transition:
Stochastic games.
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9

-synthesis [Church, Ramadge/Wonham, Pnueli/Rosner]

-model checking of open systems

-receptiveness [Dill, Abadi/Lamport]

-semantics of interaction [Abramsky]

-non-emptiness of tree automata [Rabin, Gurevich/ Harrington]

-behavioral type systems and interface automata [deAlfaro/ Henzinger]

-model-based testing [Gurevich/Veanes et al.]

-etc.

• Mathematicians (logic and set theory), Stochastic game theorists, Economists, 
Computer Scientists, Biologists (evolutionary games).

Game Models Applications
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Properties

 Properties in verification

 Reachability to target set.

 Liveness (Buechi) or repeated reachability.

 Fairness.

 Parity objectives: all !-regular specifications.
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MARKOV CHAINS
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Markov Chains

 Markov chain model: G=((S,E), )

 Finite set S of states.

 Probabilistic transition function 

 E ={ (s,t) | (s)(t) > 0}

 The graph (S,E) is useful.
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Markov Chain: Example

1/3

1/31/3
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Markov Chain: Example

1/3

1/3 1/3
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Markov Chain: Example

1/3

1/3 1/3 1/3 1/3
1/3
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Markov Chain: Example

1/3

1/3 1/3 1/3 1/3

1/3

1/3
1/3
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Markov Chain

 Properties of interest

 Target set T: probability to reach the target set.

 Target set B: probability to visit B infinitely often.
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Objectives

 Objectives are subsets of infinite paths, i.e., Ã µ S!.

 Reachability: set of paths that visit the target T at

least once.

 Liveness (Buechi): set of paths that visit the target B

infinitely often.

 Parity: given a priority function p: S ! {0,1,…, d}, the

objective is the set of infinite paths where the

minimum priority visited infinitely often is even.
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Parity Objectives

 Parity: given a priority function p: S ! {0,1,…, d},

the objective is the set of infinite paths where the

minimum priority visited infinitely often is even.

0 1 2 3
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Parity Objectives

 Parity: given a priority function p: S ! {0,1,…, d},

the objective is the set of infinite paths where the

minimum priority visited infinitely often is even.

0 1 2 3
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Parity Objectives

 Parity: given a priority function p: S ! {0,1,…, d},

the objective is the set of infinite paths where the

minimum priority visited infinitely often is even.

0 1 2 3
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Markov Chain: Example

 Reachability: starting state is blue.
 Red: probability is less than 1.

 Blue: probability is 1.

 Green probability is 1.

 Liveness: infinitely often visit
 Red: probability is 0.

 Blue: probability is 0.

 Green: probability is 1.



Krishnendu Chatterjee MoVeP, June 28, 2010 23

Markov Chain: Example

 Parity

 Blue infinitely often, or 1 finitely often.

 In general, if priorities are 0,1, …, 2d, then we require
for some 0 · i · d, that priority 2i infinitely often, and

all priorities less than 2i is finitely often.

01 2
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Questions

 Qualitative question

 The set where the property holds with probability 1.

 Qualitative analysis.

 Quantitative question

 What is the precise probability that the property holds.

 Quantitative analysis.
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Qualitative Analysis of Markov Chains

 Consider the graph of Markov chain.

 Closed recurrent set: 

 Bottom strongly connected component.

 Closed: No probabilistic transition out.

 Strongly connected.
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Qualitative Analysis of Markov Chains

 Theorem: Reach the set of closed recurrent set

with probability 1.

 Proof.

 Consider the DAG of the scc decomposition of the

graph.

 Consider a scc C of the graph that is not bottom.

 Let ® be the minimum positive transition prob.

 Leave C within n steps with prob at least ¯ = ®n.

 Stay in C for at least k*n steps is at most (1-¯)k.

 As k goes to infinity this goes to 0.



Krishnendu Chatterjee MoVeP, June 28, 2010 27

Qualitative Analysis of Markov Chains

 Theorem: Reach the set of closed recurrent set 

with probability 1.

 Proof. 

 Path goes out with ¯.

 Never gets executed for k times

is (1-¯)k. Now let k goto

infinity.
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Qualitative Analysis of Markov Chains

 Theorem: Given a closed recurrent set C, for any

starting state in C, all states is reached with prob

1, and hence all states visited infinitely often with

prob 1.

 Proof.  Very similar argument like before.
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Qualitative and Quantitative Analysis

 Previous two results are the basis.

 Example: Liveness objective.

 Compute max scc decomposition.

 Reach the bottom scc’s with prob 1.

 A bottom scc with a target is a good bottom scc,

otherwise bad bottom scc.

 Qualitative: if a path to a bad bottom scc, not with prob

1. Otherwise with prob 1.

 Quantitative: reachability probability to good bottom

scc.
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Quantitative Reachability Analysis

 Let us denote by C the set of bottom scc’s (the

quantitative values are 0 or 1). We now define a

set of linear equalities. There is a variable xs for

every state s. The equalities are as follows:

 xs = 0 if s in C and bad bottom scc.

 xs = 1 if s in C and good bottom scc.

 xs = t2S xt * (s)(t).

 Brief proof idea: The remaining Markov chain is

transient. Matrix algebra det(I- ) 0.



Krishnendu Chatterjee MoVeP, June 28, 2010 31

Markov Chain Summary

Reachability Liveness Parity

Qualitative Linear time Linear time Linear time

Quantitative Linear equalities

(Gaussian elimination)

Linear equalities Linear equalities
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MARKOV DECISION PROCESSES 
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Markov Decision Processes

 Markov decision processes (MDPs)

 Non-determinism.

 Probability.

 Generalizes non-deterministic systems and Markov

chains.

 An MDP G= ((S,E), (S1, SP), )

 : SP ! D(S).

 For s 2 SP, the edge (s,t) 2 E iff (s)(t)>0.

 E(s) out-going edges from s, and assume E(s) non-

empty for all s.
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MDP: Example

1/3 1/3

1/3

1/2

1/2
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MDP: Example
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MDP: Example

1/3 1/3

1/3

1/2

1/2



Krishnendu Chatterjee MoVeP, June 28, 2010 38

MDP: Example

1/3 1/3

1/3

1/2

1/2

y 1-y
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MDP

 Model

 Objectives

 How is non-determinism resolved: notion of

strategies. At each stage can be resolved

differently and also probabilistically.
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Strategies

 Strategies are recipe how to move tokens or how

to extend plays. Formally, given a history of play

(or finite sequence of states), it chooses a

probability distribution over out-going edges.

 ¾: S* S1 D(S).
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MDP: Strategy Example

1/3 1/3

1/3

1/2

1/2

Token for k-th time: choose left with prob 1/k and right (1-1/k). 
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Strategies

 Strategies are recipe how to move tokens or how to extend plays.
Formally, given a history of play (or finite sequence of states), it
chooses a probability distribution over out-going edges.
 ¾: S* S1 ! D(S).

 History dependent and randomized.

 History independent: depends only current state (memoryless or
positional).
 ¾: S1 ! D(S)

 Deterministic: no randomization (pure strategies).
 ¾: S* S1 ! S

 Deterministic and memoryless: no memory and no randomization
(pure and memoryless and is the simplest class).
 ¾: S1 ! S
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Example: Cheating Lovers

Visit green and red infinitely often.

Pure memoryless not good enough.

Strategy with memory: alternates.

Randomized memoryless: choose with uniform probability.

Certainty vs. probability 1.
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Values in MDPs

 Value at a state for an objective Ã

 Val(Ã)(s) = sup¾ Prs
¾(Ã).

 Qualitative analysis

 Compute the set of almost-sure (prob 1) winning

states (i.e., set of states with value 1).

 Quantitative analysis

 Compute the value for all states.
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Qualitative and Quantitative Analysis

 Qualitative analysis

 Liveness (Buechi) and reachability as a special case.

 Reduction of quantitative analysis to quantitative 

reachability.

 Quantitative reachability.
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Qualitative Analysis for Liveness

 An MDP G, with a target set B.

 Set of states such that there is a strategy to

ensure that B is visited infinitely often with

probability 1.

 We will show pure memoryless is enough.

 The generalization to parity (left as an exercise).
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Attractor

 Random Attractor for a set U of states.

 U0 = U.

 Ui+1 = Ui [ {s 2 S1 j E(s) µ Ui} 

[ {s 2 SP j E(s) Å Ui ;}.

 From Ui+1 no matter what is the choice, Ui is

reached with positive probability. By induction U

is reached with positive probability.
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Attractor

 AttrP(U) =[i ¸ 0 Ui.

 Attractor lemma: From AttrP(U) no matter the

strategy of the player (history dependent,

randomized) the set U is reached with positive

probability.

 Can be computed in O(m) time (m number of edges).

 Thus if U is not in the almost-sure winning set, then

AttrP(U) is also not in the almost-sure winning set.
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Iterative Algorithm

 Compute simple reachability to B (exist a path) in 

the graph of the MDP (S,E). Let us call this set A.

B
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Iterative Algorithm

 Let U= S n A. Then there is not even a path from U 

to B. Clearly, U is not in the almost-sure set.

 By attractor lemma can take AttrP(U) out and iterate.

BAU



Krishnendu Chatterjee MoVeP, June 28, 2010 51

Iterative Algorithm

 AttrP(U) may or may not intersect with B.

BAU

AttrP(U)
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Iterative Algorithm

 Iterate on the remaining sub-graph.

 Every iteration what is removed is not part of almost-
sure winning set. 

 What happens when the iteration stops. 

BAU

AttrP(U)
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Iterative Algorithm

 The iteration stops. Let Z be the set of states
removed overall iterations.

 Two key properties.

BAZ
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Iterative Algorithm

 The iteration stops. Let Z be the set of states
removed overall iterations.

 Two key properties:
 No probabilistic edge from outside to Z.

BAZ
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Iterative Algorithm

 The iteration stops. Let Z be the set of states
removed overall iterations.

 Two key properties:
 No probabilistic edge from outside to Z.

 From everywhere in A (the remaining graph) path to B.

BAZ
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Iterative Algorithm

 Two key properties:
 No probabilistic edge from outside to Z.

 From everywhere in A (the remaining graph) path to B.

 Fix a memoryless strategy as follows: 
 In A n B: shorten distance to B. (Consider the BFS and choose edge).

 In B: stay in A.

BAZ
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Iterative Algorithm

 Fix a memoryless strategy as follows: 
 In A n B: shorten distance to B. (Consider the BFS and choose edge).

 In B: stay in A.

 Argue all bottom scc’s intersect with B. By Markov chain theorem 
done.

BAZ
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Iterative Algorithm

 Argue all bottom scc’s intersect with B. By Markov chain
theorem done.

 Towards contradiction some bottom scc that does not
intersect.
 Consider the minimum BFS distance to B.

BAZ
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Iterative Algorithm

 Argue all bottom scc’s intersect with B. By Markov chain theorem done.

 Towards contradiction some bottom scc that does not intersect. 
 Consider the minimum BFS distance to B.

 Case 1: if a state in SP, all edges must be there and so must be the one with shorter distance.

 Case 2: if a state in S1, then the successor chosen has shorter distance.

 In both cases we have a contradiction.

BAZ



Krishnendu Chatterjee MoVeP, June 28, 2010 60

Iterative Algorithm

 Time complexity is O(n m).

 Pure memoryless almost-sure winning strategy.

 Exercise: extend it to parity with time complexity

O(n m d).

 We are now done with qualitative analysis. We

will now argue how to reduce quantitative

analysis to quantitative reachability.
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Quantitative Parity to Quantitative Reachability

 End-components: An end-component generalizes
both scc and closed recurrent set. A set U is an
end-component if the following properties hold:
 U is strongly connected.

 U is closed (no probabilistic edge out).

 Note that player 1 edges may leave the end-
component.

 Why is end-component important: it allows us to
reason about infinite behaviors.
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End Component Property

 End-component property: For an MDP and for all
strategies, with probability 1 the set of states visited
infinitely often is an end-component.

 Generalizes the scc for graphs and closed recurrent
set for Markov chains.

 Proof:
 Shape of the proof very similar to closed recurrent set.

 We need to show that if a set U is not an end-component,
then cannot be visited infinitely often with positive probability.

 Assume towards contradiction that there is such a set U.
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End Component Property

 End-component property: For an MDP and for all strategies, with
probability 1 the set of states visited infinitely often is an end-
component.

 Proof:
 We need to show that if a set U is not an end-component, then cannot be

visited infinitely often with positive probability.

 Assume towards contradiction that there is such a set U.

 U must be strongly connected.

 Since U is not end-component, some probabilistic state s with an edge to t
going out of U with probability ®.

 Hence the probability that s is visited infinitely often, but the edge to t is taken
finitely often is 0.

 The result follows.



Krishnendu Chatterjee MoVeP, June 28, 2010 64

Winning End-component

 An end-component U is winning if the minimum
priority of U is even.

 From end-component property for any strategy
the probability to satisfy parity is the probability to
reach the winning end-components.

 In winning end-components pure memoryless
almost-sure winning strategy exists.
 Proof: Choose successor to shorten distance to the

minimum even priority state.
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Quantitative Parity to Quantitative Reachability

 The probability to satisfy is the probability to reach winning
end-components.

 In winning end-components pure memoryless almost-sure
strategy.

 Winning end-components are included in the almost-sure
winning set.

 Hence we need quantitative reachability to almost-sure
winning set.

 We now need the quantitative reachability to complete the
argument.
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Quantitative Reachability

 An MDP G, and a target set T.

 Val(Reach(T))(s) = sup¾ Prs
¾(Reach(T)).

 v(s) for abbreviation.

 Two properties: 

 Property 1: For s 2 SP we have v(s) = t2S v(t)* (s)(t). 

 Property 2: For s 2 S1 we have v(s) = max { v(t) | t 2

E(s)}.
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Proof of Property 2

 Inequality 1: v(s) ¸ max{ v(t) | t 2 E(s)}

 Fix ²>0.

 Let t* be the arg max.

 From s choose t*, and then an ² optimal strategy from

t* to ensure value at least v(t*)-².

 As ²>0 is arbitrary, the result follows.

 Inequality 2. v(s) · max{ v(t) | t 2 E(s)}

 We have 

 v(s) · sup¹ t2S v(t)* ¹(t) · max {v(t) | t 2 E(s)}, 

where ¹ 2 D(E(s)).  
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A Simple Attempt

 For a state s choose a successor that achieves

the maximum.

 However this simple construction is not sufficient.
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MDP: Simple Fails

1/3 1/3

1/3

1/2

1/2

In all blue states the value is ½.

However the choice of red edge is bad.
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Quantitative Reachability

 Original MDP is connected.

 Compute simple reachability to T.

 From U, there is no path so value is 0.

 From A, the value is positive everywhere as there is a path. 

TAU



Krishnendu Chatterjee MoVeP, June 28, 2010 71

Quantitative Reachability

 From U, there is no path so value is 0.

 From A, the value is positive everywhere as there is a path.

 Retain only the edges that attains the max in A (remove all the other). 
Make U and T absorbing. 

 Easy to show that there is still path to T from A.

 Choose the edge that shortens distance to T. 

TAU
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Quantitative Reachability

 Retain only the edges that attains the max in A (remove all the other). Make 
U and T absorbing. 

 Easy to show that there is still path to T from A.

 Choose the edge that shortens distance to T.

 Markov chain where all closed recurrent states are U or T.

 The values v(s) satisfies the Markov chain equality. Hence the memoryless
strategy achieves v(s). 

TAU
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Quantitative Reachability

 An MDP G, and a target set T.

 Val(Reach(T))(s) = sup¾ Prs
¾(Reach(T)).

 Existence of pure memoryless optimal strategies.

 Algorithm: Linear programming. Variable xs for all 
states s.
 xs = 0                            s 2 U

 xs =1                             s 2 T

 xs = t2S xt * (s)(t)        s 2 SP

 xs = maxt2E(s) xt s 2 S1.
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Quantitative Reachability

 Algorithm: Linear programming. Variable xs for all 

states s.

 xs = 0                          s 2 U

 xs =1                           s 2 T

 xs = t2S xt * (s)(t)      s 2 SP

 xs = maxt2E(s) xt s 2 S1.

 The above optimization to linear program

 Objective function: min t2S xt

 xs ¸ xt s 2 S1, t 2 E(s).
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MDP Summary

Reachability Liveness Parity

Qualitative O(n m) O(n m) O(n m d)

Quantitative Linear programming Linear programming Linear programming 
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Stochastic Games 

 Stochastic games
 Non-determinism: angelic vs. demonic non-

determinism (alternation).

 Probability.

 Generalizes non-deterministic systems and Markov
chains, alternating games, MDPs.

 An MDP G= ((S,E), (S1, S2,SP), )
 : SP ! D(S).

 For s 2 SP, the edge (s,t) 2 E iff (s)(t)>0.

 E(s) out-going edges from s, and assume E(s) non-
empty for all s.
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Stochastic Game 

1/32/31/2 1/2

Example of stochastic game.

Objective for player 1 is to visit green infinitely often
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Strategies

 Strategies are recipe how to move tokens or how

to extend plays. Formally, given a history of play

(or finite sequence of states), it chooses a

probability distribution over out-going edges.

 ¾: S* S1 D(S).

 ¼: S* S2 ! D(S).
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Strategies

 Strategies are recipe how to move tokens or how to extend plays. Formally,
given a history of play (or finite sequence of states), it chooses a probability
distribution over out-going edges.
 ¾: S* S1 ! D(S).

 History dependent and randomized.

 History independent: depends only current state (memoryless or positional).
 ¾: S1 ! D(S)

 Deterministic: no randomization (pure strategies).
 ¾: S* S1 ! S

 Deterministic and memoryless: no memory and no randomization (pure and
memoryless and is the simplest class).
 ¾: S1 ! S

 Same notations for player 2 strategies ¼.
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Values in Stochastic Games

 Value at a state for an objective Ã

 Val(Ã)(s) = sup¾ inf¼ Prs
, (Ã).

 Qualitative analysis

 Compute the set of almost-sure (prob 1) winning states

(i.e., set of states with value 1).

 Quantitative analysis

 Compute the value for all states.

 Determinacy: the order of sup inf can be exchanged.
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Non-Stochastic Games

 There are no probabilistic states.

 Non-stochastic games with parity objectives

 Values only 0 or 1.

 Pure memoryless winning strategies exist.

 Once a pure memoryless strategy is fixed all cycles

winning.

Win2 9 ¼ 8 ¾ Win1 9 ¾ 8 ¼

EvenOdd
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Qualitative and Quantitative Analysis

 Qualitative analysis

 Reduction to games without probability.

 Use existence of pure memoryless strategies in

games with probability for parity objectives.

 Show it for Liveness and can be extended to parity.

 Quantitative analysis

 Combine notion of qualitative and local optimality for

quantitative optimality.
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Qualitative Analysis

 Reduction

Stochastic Game                 Non stochastic game

Almost Win2 Win1
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Reduction

 Replace every probabilistic state by two-player 

gadget. Illustrate it for Liveness.

E(s) E(s)

E(s)

E(s) E(s)
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Qualitative Analysis

 Reduction: the end-components are winning.

Stochastic Game                 Non stochastic game

Almost Win2 Win1
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Qualitative Analysis

 Reduction: the end-components are winning.

Stochastic Game                 Non stochastic game

Almost Win2 Win1

Bad end-component to bad cycle
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Reduction

 Choice in the gadget

E(s) E(s)

E(s)

E(s) E(s)
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Qualitative Analysis

 Reduction: the end-components are winning.

Stochastic Game                 Non stochastic game

Almost Win2 Win1

Good end-component to good cycle
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Reduction

 Choice in the gadget

E(s) E(s)

E(s)

E(s) E(s)

Shorten distance to green



Krishnendu Chatterjee MoVeP, June 28, 2010 91

Qualitative Analysis

 Reduction: the end-components are winning.

Stochastic Game                 Non stochastic game

Almost Win2 Win1
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Qualitative Analysis

 Reduction: the end-components are winning.

Stochastic Game                 Non stochastic game

Almost Win2 Win1
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Reduction

 Gadget based reduction can be extended to

parity.

 Qualitative analysis

 Pure memoryless almost-sure strategies exists.

 Linear time reduction to non-stochastic games.

 Same complexity: NP Å coNP.

 All algorithms can be used.



Krishnendu Chatterjee MoVeP, June 28, 2010 94

Quantitative Analysis

 Unlike MDPs, we cannot do the following:

 Compute almost-sure winning states.

 Compute quantitative reachability to almost-sure

winning states.

 We illustrate with an example.
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Stochastic Game 

1/32/31/2 1/2

Example of stochastic game.

Objective for player 1 is to visit green infinitely often

Cannot ensure to reach green absorbing with prob 2/3.
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Quantitative Analysis

 Quantitative optimality

 Local optimality

 Qualitative optimality

 Value class: the set of states with same value.

V(r) is the set of states with value r.
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Value Class Property

V(1) V(0)

Higher value class                                  Lower value class
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Value Class: Boundary Probabilistic States

V(1) V(0)

Higher value class                                  Lower value class
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Value Class Reduction

 Remove edges going out to lower value class

(local optimality).

 Change boundary probabilistic states to winning

states for player 1.

 Claim: In this sub-game player 1 wins almost-

surely everywhere.
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Sub-game Qualitative Optimality

 Claim: Player 1 wins almost-surely.

 Proof: Suppose not. 

 Then player 2 wins with positive probability
somewhere.

 Player 2 wins almost-surely somewhere.

 Player 1 if stays in the value class loses with
probability 1 or else jumps to a lower value class.

 Contradiction.
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Value Class: Boundary Probabilistic States

V(1) V(0)

Higher value class                                  Lower value class
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Value Class: Boundary Probabilistic States

V(1) V(0)

Higher value class                                  Lower value class
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Value Class Property

 In value classes if we assume boundary

probabilistic vertices winning for player 1 then

player 1 wins almost surely.

 Conditional almost-sure winning strategies.

 Stitching lemma: Compose them to get a optimal

strategy.
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Stitching Lemma

 Proof idea:

 If the game stays in some value class player 1 wins 
with probability 1.

 Else it leaves the value class through the boundary 
probabilistic vertex or goes to a higher value class.

 Invoke sub-martingale Theorem or use results from 
MDPs.
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Quantitative Analysis

 Pure memoryless optimal strategies exist.

 Complexity bound

 NP Å coNP.

 Algorithms: Strategy improvement algorithms,

uses qualitative algorithms and local optimality.
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Stochastic Games Summary

Reachability Liveness Parity

Qualitative O(n m) O(n m) NP Å coNP

Linear reduction to 
non-stochastic 
parity

Quantitative NP Å coNP NP Å coNP NP Å coNP
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Summary and Messages

 Markov chains
 Qualitative: Linear time algorithm through closed recurrent states

(bottom scc’s).

 Quantitative analysis: Linear equalities, Gaussian elimination.

 MDPs
 Qualitative: Iterative algorithm.

 Quantitative: Reduction to quantitative reachability using end-
components.

 Quantitative reachability: Linear programming.

 Stochastic games
 Qualitative: Reduction to non-stochastic games.

 Quantitative: Qualitative and local optimality.
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Extensions

 Perfect-information turn-based finite state

stochastic games

 Infinite state games: pushdown games, timed games.

 Concurrent games: simultaneous interaction.

 Imperfect-information games.
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CONCURRENT GAMES
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Games on Graphs

Games on graphs: 

1. Turn-based: 

• Chess.

• Tic-tac-toe.

2. Concurrent: 

• Penalty Shoot-out.

• Rock-paper-scissor.
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Concurrent Game Graphs

A concurrent game graph is a tuple G =(S,M,¡1,¡2,±)

• S is a finite set of states.

• M is a finite set of moves or actions.

• ¡i: S ! 2M n ; is an action assignment function that assigns the non-empty 

set ¡i(s) of actions to player i at s, where i 2 {1,2}.

• ±: S £ M £ M ! Dist(S), is a probabilistic transition function that given a 

state and actions of both players gives a probability distribution of the next 

state.
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An Example (Deterministic Transition)

s R

run, wait
hide, throw

hide, wait

run, throw
[Everett 57]

Run

Hide

Throw Wait
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Concurrent reachability games 

s R

run, wait
hide, throw

hide, wait

run, throw

Run

Hide

Throw Wait

[Everett 57]

Move Probability
run q
hide 1-q (q>0)

Win at s with probability
1-q, for all q > 0.
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Concurrent reachability games 

s R

run, wait
hide, throw

hide, wait

run, throw

Run

Hide

Throw Wait

[Everett 57]

Move Probability
run q
hide 1-q (q>0)

Win at s with probability
1-q, for all q > 0.

Player 1 cannot achieve v(s) = 1, only v(s) = 1-q for all q > 0.
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Concurrent Games

 Strategies
 Require randomization.

 May not be optimal.

 Only ²-optimal, for ²>0.

 For liveness requires infinite memory.

 Values can be irrational for concurrent deterministic
reachability games.

 Qualitative and quantitative analysis still decidable
 Qualitative analysis is NP Å coNP.

 Quantitative analysis is PSPACE.
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PARTIAL-INFORMATION  GAMES
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Partial-information Games

a

a

a

a

b

b

a

b

a

a

b

b

In starting play a.
In yellow play a and b at random.
In purple: 
• if last was yellow then a
• if last was starting, then b.

Requires both randomization and 
memory
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Partial-information Games

 Strategies
 Require randomization.

 May not be optimal.

 Only ²-optimal, for ²>0.

 For liveness requires infinite memory.

 More complicated than concurrent games.

 Quantitative analysis
 Undecidable.

 Qualitative analysis 
 Reachability, Liveness: EXPTIME-complete.

 Parity: Undecidable.
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Conclusion

 Perfect-information stochastic games

 Applications: verification and synthesis of stochastic

reactive systems.

 Markov chains, MDPs and stochastic games with

parity objectives.

 Glimpses of the world of games beyond.
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Thank you !

Questions ?

The end


