Compositional Shape Analysis by means of B-Abduction

Bino istefaho

Queen Mary University of London and
Monoidies Ltd

MOVEP 2010, Aachen 29/06/2010

A lot of real code out there uses pointer manipulation..

```
void t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)
KIRQL
BUS_RESET_IRP
PDEVICE_EXTENSION
```

Irql, CancelIrql;
*BusResetIrp, *temp; deviceExtension;

```
deviceExtension \(=\) DeviceObject->DeviceExtension;
KeAcquireSpinLock(\&deviceExtension->ResetSpinLock, \&Irql);
temp \(=\) (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->Flink2;
while (BusResetIrp) \{
if (BusResetIrp->Irp == Irp) \{
temp->Flink2 \(=\) BusResetIrp->Flink2; free(BusResetIrp);
break;
\}
else if (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) \{ break;
\}
else \{
temp \(=\) BusResetIrp;
BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
\}
\}
```

KeReleaseSpinLock(\&deviceExtension->ResetSpinLock, Irql);
IoReleaseCancelSpinLock(Irp->CancelIrql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

Is this: correct?

Or at least does it basic properties like it won't
crash or leak memory?

We want to build tool that automatically answer such questions

Crash course on Separation Logic

Simple Imperative Language

 - Safe commands:- S::= skip | x:=E | x:=new(E1,...En)
- Heap accessing commands:

where E is and expression x, y, nil, etc.
- Command:

$$
\begin{aligned}
& \text { - } C::=S|A| C 1 ; C 2 \mid \text { if } B\{C 1\} \text { else }\{C 2\} \mid \\
& \text { while } B \text { do }\{C\}
\end{aligned}
$$

where B boolean guard $E=E, E!=E$, etc.

Example Program: List Reversal

$$
\begin{aligned}
& \mathrm{p}:=\text { nil; } \\
& \text { while (c !=nil) do \{ } \\
& \mathrm{t}:=\mathrm{p} ; \\
& \mathrm{p}:=\mathrm{c} ; \\
& \mathrm{c}:=[\mathrm{c}] \\
& {[\mathrm{p}]:=\mathrm{t} ;} \\
& \}
\end{aligned}
$$

Example Program: List Reversal

```
p:=nil;
while (c !=nil) do {
    t:=p;
    p:=c;
    c:=[c];
    [p]:=†;
}
```


Example Program: List Reversal

```
p:=nil;
while (c !=nil) do {
    t:=p;
    p:=c;
    c:=[c];
    [p]:=†;
}
```


Example Program: List Reversal

Some properties

p:=nil;
while (c ! =nil) do \{

$$
\begin{aligned}
& \mathrm{t}:=\mathrm{p} ; \\
& \mathrm{p}:=\mathrm{c} ; \\
& \mathrm{c}:=[\mathrm{c}] ; \\
& {[\mathrm{p}]:=\mathrm{t} ;}
\end{aligned}
$$

$$
\}
$$

Example Program

We are interested in pointer manipulating programs
$\Rightarrow x:=\operatorname{new}(3,3) ;$
$y:=\operatorname{new}(4,4)$;
[x+1]:= y_{i}
[$\mathrm{y}+1]:=\mathrm{x}$;
$y:=x+1$;
dispose x;
y := [y];

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ; \\
& \text { dispose } x ; \\
& y:=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ; \\
& \text { dispose } x ; \\
& y:=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ;
\end{aligned}
$$

dispose $X ;$

$$
y:=[y] ;
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;}
\end{aligned}
$$

$$
\Longrightarrow y:=x+1
$$

dispose $X ;$

$$
y:=[y] ;
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ;
\end{aligned}
$$

\Rightarrow dispose x;

$$
y:=[y] ;
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ;
\end{aligned}
$$

$$
\text { dispose } \mathrm{X} \text {; }
$$

$$
\Longrightarrow y:=[y] ;
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x:=\operatorname{new}(3,3) ; \\
& y:=\operatorname{new}(4,4) ; \\
& {[x+1]:=y ;} \\
& {[y+1]:=x ;} \\
& y:=x+1 ;
\end{aligned}
$$

dispose X;
$y:=[y] ;$

Why Separation Logic?

Consider this code:

$$
\begin{aligned}
& {[y]:=4 ;} \\
& {[z]:=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How?

Why Separation Logic?

Consider this code:

Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]:=4 ;} \\
& {[z]:=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How?

Why Separation Logic?

Consider this code:

Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]:=4 ;} \\
& {[z]:=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How? We need to know that things stay the same. How?

Why Separation Logic?

Consider this code:
Assume $([x]=3)$
Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]:=4 ;} \\
& {[z]:=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])
Guarantee($[x]=3)$
We need to know that things are different. How? We need to know that things stay the same. How?

Why Separation Logic?

Consider this code:
Assume($[x]=3 \quad \& \& x!=y ~ \& \& x!=z)$
Assume (y != z)

$$
\begin{aligned}
& {[y]:=4 ;} \\
& {[z]:=5 ;}
\end{aligned}
$$

Guarantee ([y] != [z])
Guarantee $([x]=3)$
We need to know that things are different. How? We need to know that things stay the same. How?

Framing

We want a general concept of things not being affected.

$$
\frac{\{P\} \subset\{Q\}}{\{R \& \& P\} \subset\{Q \& \& R\}}
$$

What are the conditions on C and R ? Hard to define if reasoning about a heap and aliasing

Framing

We want a general concept of things not being affected.

$$
\frac{\{P\} C\{Q\}}{\{R \& \& P C\{Q \& \& R\}}
$$

What are the conditions on C and R ?
Hard to define if reasoning about a heap and aliasing
This is where separation logic comes in

$$
\frac{\{P\} \subset\{Q\}}{\left\{R^{*} P\right\} C\{Q * R\}}
$$

Introduces new connective * used to separate state.

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs } \stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs } \stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Stack

$$
\begin{aligned}
& x \\
& x \\
& y \\
& y \\
& \hline
\end{aligned}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs } \stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\text { def }} \text { Locs } \rightarrow \text { fin Vals } \\
\text { Stacks } \xlongequal{=} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Stack

$$
\begin{aligned}
& x \quad 7 \\
& y \\
& y \\
& \hline 42
\end{aligned}
$$

Heap

$$
\begin{array}{ccc}
7 & 9 & 42 \\
0 & 11 & 9 \\
\hline
\end{array}
$$

Storage Model

$$
\begin{aligned}
& \text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
&\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
& \text { Heaps } \stackrel{\text { def }}{\text { docs } \rightarrow \text { fin } \text { Vals }} \\
& \text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
& \text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{aligned}
$$

Stack

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Informal Meaning

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \left\lvert\, \begin{array}{ll}
\text { emp } \mid P * Q & \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P
\end{array}\right. & \text { Classical Logic }
\end{array}
$$

Informal Meaning

Assertions

$$
\begin{array}{ccll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \left\lvert\, \begin{array}{ll}
\text { emp } \mid P * Q & \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P
\end{array}\right. & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & :=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \mid \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
& \text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& & \text { emp } \mid P * Q & \\
& & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Informal Meaning
Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & :=E=F|E \geq F| E \mapsto F & & \text { Atomic Predicates } \\
& & \text { emp } \mid P * Q & \\
& & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Informal Meaning

Heap

Examples

Formula: emp

Examples

Formula: $\quad e m p^{*} x \mid->y$

Examples

Formula: $\quad e m p^{*} x \mid->y$

Examples

Formula:
$x \mid->y$

Examples

Formula:
$x \mid->y$ * $y \mid->z$

Examples

Formula:
$x \mid->y$ * $y \mid->z$

Examples

Formula:
$x\left|->y{ }^{*} y\right|->z^{*} z \mid->x$

Examples

Formula:
$x\left|->y{ }^{*} y\right|->z^{*} z \mid->x$

Semantics of Assertions

$$
(s, h) \vDash P
$$

$s, h \models E \mapsto F \quad$ iffdom $(\quad h)=\left\{\llbracket E \rrbracket_{s}\right\}$ and $h\left(\llbracket E \rrbracket_{s}\right)=\llbracket F \rrbracket_{s}$
$s, h=\mathrm{emp} \quad$ iffdom $(\quad h)=\emptyset$
$s, h \models P * Q \quad$ iff $\quad \exists h_{0}, h_{1} \cdot \operatorname{dom}\left(h_{0}\right) \cap \operatorname{dom}\left(h_{1}\right)=\emptyset$ and $h_{0} \cdot h_{1}=h$

$$
\text { and } s, h_{0} \models P \text { and } s, h_{1} \models Q
$$

$s, h \models P \wedge Q \quad$ iff $\quad s, h \models P$ and $s, h \models Q$
where meaning of expressions

Example

Stack
 Heap

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
x \mapsto 3, y
$$

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \ldots * E+n-1 \mapsto E_{n}$

Example

$$
x \mapsto 3, y
$$

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \ldots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
& x \mapsto 3, y \\
& y \mapsto 3, x
\end{aligned}
$$

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
& x \mapsto 3, y \\
& y \mapsto 3, x
\end{aligned}
$$

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x \\
x & \mapsto 3, y \wedge y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x \\
x & \mapsto 3, y \wedge y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Abbreviation: E points to a record of several fields: $E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

An inconsistency

- What's wrong with the following formula?

$$
\text { (c) } 10|->3 * 10|->3
$$

An inconsistency

-What's wrong with the following formula?

$$
\text { - } 10|\rightarrow 3 * 10|->3
$$

Try to be in two places at the same time

...back to the real stuff:

Compositional Shape Analysis by means of Bi-Abduction

Literature

- C. Calcagno, D Distefano, P OLearn and H Yang: Compositiona Shape ahaysis y Meansof B Abduction POPE 2009.
-D. Distefano atack ogarge ofistraa Code with Bu Abductive hiference FMICS 2009

A lot of real code out there uses pointer manipulation..

```
void t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)
KIRQL
BUS_RESET_IRP
PDEVICE_EXTENSION
```

Irql, CancelIrql;
*BusResetIrp, *temp; deviceExtension;

```
deviceExtension \(=\) DeviceObject->DeviceExtension;
KeAcquireSpinLock(\&deviceExtension->ResetSpinLock, \&Irql);
temp \(=\) (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->Flink2;
while (BusResetIrp) \{
if (BusResetIrp->Irp == Irp) \{
temp->Flink2 \(=\) BusResetIrp->Flink2; free(BusResetIrp);
break;
\}
else if (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) \{ break;
\}
else \{
temp \(=\) BusResetIrp;
BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
\}
\}
```

KeReleaseSpinLock(\&deviceExtension->ResetSpinLock, Irql);
IoReleaseCancelSpinLock(Irp->CancelIrql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

Is this: correct?

Or at least does it basic properties like it won't
crash or leak memory?

We want to build tool that automatically answer such questions

Space Invader analyzer: overview

- Shape analyses discover deep properies about the heap e g, a varible points to a cyclic/acyclic doubly linked ist
- Space lnvader is inter procedural Shape analysis for Cprograms
- Based on Separation Logic and Abstract interpretation to infer invariants
- Builds proofs or reports possible memory faults or memory leaks

Shape Analysis and Real Code

- So far shape analysis mostly applied to toy programs

Shape Analysis and Real Code

- So far shape analysis mostly applied to toy programs

Shape Analysis and Real Code

- So far shape analysis mostly applied to toy programs

"no worries, device divivers use mosity lists"

typedef struct \{	
PDEVICE_OBJECT	StackDeviceObject;
PDEVICE_OBJECT	PortDeviceObject;
PDEVICE_OBJECT	PhysicalDeviceObject;
UNICODE_STRING	SymbolicLinkName;
KSPIN_LOCK	ResetSpinLock;
KSPIN_LOCK	CromSpinLock;
KSPIN_LOCK	AsyncSpinLock;
KSPIN_LOCK	IsochSpinLock;
KSPIN_LOCK	IsochResourceSpinLock;
BOOLEAN	bShutdown;
DEVICE_POWER_STATE	CurrentDevicePowerState;
SYSTEM_POWER_STATE	CurrentSystemPowerState;
ULONG	GenerationCount;
PASYNC_ADDRESS_DATA	Flink1;
PASYNC_ADDRESS_DATA	Blink1;
PBUS_RESET_IRP	Flink2;
PBUS_RESET_IRP	Blink2;
PCROM_DATA	Flink3;
PCROM_DATA	Blink3;
_PISOCH_DETACH_DATA	Flink4;
_PISOCH_DETACH_DATA	Blink4;
PISOCH_RESOURCE_DATA	Flink5;
PISOCH_RESOURCE_DATA	Blink5;
\} DEVICE_EXTENSION, *PDEVICE_EXTENSION;	

```
typedef struct ASYNC_ADDRESS_DATA {
    struct ASYNC_ADDRESS_DATA* Flink1;
    struct ASYNC_ADDRESS_DATA* Blink1;
    _PDEVICE_EXTENSION DeviceExtension;
    PVOID Buffer;
    ULONG nLength;
    ULONG nAddressesReturned;
    PADDRESS_RANGE AddressRange;
    HANDLE hAddressRange;
    PMDL pMdl;
} ASYNC_ADDRESS_DATA, *PASYNC_ADDRESS_DATA;
typedef struct BUS_RESET_IRP {
    struct BUS_RESET_IRP *Flink2;
    struct BUS_RESET_IRP *Blink2;
    PIRP Irp;
} BUS_RESET_IRP, *PBUS_RESET_IRP;
typedef struct CROM_DATA {
    struct CROM_DATA *Flink3;
    struct CROM_DATA *Blink3;
    HANDLE hCromData;
    PVOID Buffer;
    PMDL pMdl;
} CROM_DATA, *PCROM_DATA;
typedef struct ISOCH_RESOURCE_DATA {
    struct ISOCH_RESOURCE_DATA *Flink5;
    struct ISOCH_RESOURCE_DATA *Blink5;
    HANDLE hResource;
} ISOCH_RESOURCE_DATA, *PISOCH_RESOURCE_DATA;
```

typedef struct \{
PDEVICE_OBJECT
PDEVICE_OBJECT
PDEVICE_OBJECT

UNICODE_STRING
KSPIN_LOCK
KSPIN_LOCK
KSPIN_LOCK
KSPIN_LOCK
KSPIN_LOCK

BOOLEAN	bShutdown;
DEVICE_POWER_STATE	CurrentDevicePowerState;
SYSTEM_POWER_STATE	CurrentSystemPowerState;
ULONG	GenerationCount;
PASYNC_ADDRESS_DATA	Flink1;
PASYNC_ADDRESS_DATA	Blink1;
PBUS_RESET_IRP	Flink2;
PBUS_RESET_IRP	Blink2;
PCROM_DATA	Flink3;
PCROM_DATA	Blink3;
_PISOCH_DETACH_DATA	Flink4;
_PISOCH_DETACH_DATA	Blink4;
PISOCH_RESOURCE_DATA	Flink5;
PISOCH_RESOURCE_DATA	Blink5;
子 DEVICE_EXTENSION, *PDEVICE_EXTENSION;	

ResetSpinLock;
CromSpinLock;
AsyncSpinLock;
IsochSpinLock;
IsochResourceSpinLock;
bShutdown;
CurrentDevicePowerState;

GenerationCount:
Flink1;

Blink1;

ink3;

Blink4;
Flink5;
Blink;
CE_EXTENSION;

```
typedef struct ASYNC_ADDRESS_DATA {
    struct ASYNC_ADDRESS_DATA* Flink1;
    struct ASYNC_ADDRESS_DATA* Blink1;
    _PDEVICE_EXTENSION DeviceExtension;
```

PortDeviceObject;

around 600 loc struct definitions

 sReturned;PADDRESS_RANGE AddressRange; HANDLE hAddressRange; PMDL pMdl;
\} ASYNC_ADDRESS_DATA, *PASYNC_ADDRESS_DATA;
typedef struct BUS_RESET_IRP \{ struct BUS_RESET_IRP *Flink2; struct BUS_RESET_IRP *Blink2; PIRP Irp;
\} BUS_RESET_IRP, *PBUS_RESET_IRP;
typedef struct CROM_DATA \{ struct CROM_DATA *Flink3; struct CROM_DATA *Blink3; HANDLE hCromData; PVOID Buffer; PMDL pMdl;
\} CROM_DATA, *PCROM_DATA;
typedef struct ISOCH_RESOURCE_DATA \{ struct ISOCH_RESOURCE_DATA *Flink5; struct ISOCH_RESOURCE_DATA *Blink5; HANDLE hResource;
\} ISOCH_RESOURCE_DATA, *PISOCH_RESOURCE_DATA;
 PDEVICE_OBJECT PDEVICE_OBJECT PDEVICE_OBJECT

UNICODE_STRING KSPIN_LOCK KSPIN_LOCK
KSPIN_LOCK
KSPIN_LOCK

StackDeviceObject;
PortDeviceObject;
typedef struct ASYNC_ADDRESS_DATA \{ struct ASYNC_ADDRESS_DATA* Flink1; struct ASYNC_ADDRESS_DATA* Blink1; _PDEVICE_EXTENSION DeviceExtension;

around 600 loc struct definitions

seturned;

ResetSpinLock;
PADDRESS_RANGE HANDLE
PMDL
\} ASYNC_ADDRESS_DATA, *PASYNC_ADDRESS_DATA;

KSPIN_

many big structs (around 20 fields) mutually \mathfrak{c} wine several fields

PASYNC ADDRESS_DATA
PBUS_RESET_IRP
PBUS_RESET_IRP
PCROM_DATA
PCROM_DATA
_PISOCH_DETACH_DATA
_PISOCH_DETACH_DATA
PISOCH_RESOURCE_DATA
PISOCH_RESOURCE_DATA
\} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Blink1;
Flink2;
Blink2;
Flink3;
Blink3;
Flink4;
Blink4;
Flink5;
Blink5;

Fact:

Real device drivers ise ists in combination, resulting h more complicated data strictires than those found in previous papers on shape analysis

Shape Analysis and Real Code

Shape Analysis and Real Code

Shape Analysis and Real Code

Need to handle
incomplete code

Shape Analysis and Real Code

Need very high modularity

Need to handle
incomplete code

Shape Analysis and Real Code

Need very high modularity

Start with something partial

Need to handle
incomplete code

Our response: compositional Space Invader

Thandes heomplete code
A Admits partal results
Modular

Our response: compositional Space Invader

Mandes heomplete code
A Amits parial results
Modilar

> Iemol

Basics

Notation

- Separation Logic's fomulae to represent program states
- Some useful predicates.
- The empty heap enp
- An allocated ceill
- A complete" ist list(E)
- P* means P and Q hold for disjoint portion of memory

Notation

* Separation Logic's formulae to represent program states
- Some useful precicates.
- The empty heap:
- An allocated cell.
- A complete ist ist (
- P* means P and Q hold for disjoint portion of memory

Notation

- Separation Logic's fomulae to represent program states
- Some useful predicates.
- The empty heap enp
- An allocated ceill
- A complete" ist list(E)
- P* means P and Q hold for disjoint portion of memory

Small specs

- Small specs encourage ocal reasoning and help to get small proots
- When proving:code involving procedures we use only their footorint

Example: use of small specs in proofs

Dispose $(11) \%$

Dispose (12))

Example: use of small specs in proofs

\{11st (11) 大14st (12)
Dispose $(11) \%$

Dispose (12)

Spect $\{$ statad 1 spose (1) (emp $\}$

Example: use of small specs in proofs

\{1s st (11) 大14st (12)
Dispose $(11) ;$
$\{e m p * 1 s t(22)\}$
Dispose (12) 9

Example: use of small specs in proofs

\{1s st (11) 大14st (12)
Dispose $(11) \%$
\{11st(22)
Dispose (12))

Spect $\{$ statad 1 spose (1) (emp $\}$

Example: use of small specs in proofs

\{1s st (11) 大 14 st (12 2$)\}$
Dispose $(11) \%$
\{11st(22)
Dispose (12))
$\{\mathrm{emp}\}$

Spect $\{$ statad 1 spose (1) (emp $\}$

Frame Inference

$$
\begin{aligned}
& \{1 \text { ist }(11) * 1 \text { ist (12) }\} \\
& \text { Dispose (11); }
\end{aligned}
$$

Frame Inference

$$
\begin{aligned}
& \{1 \text { ist }(11) * 1 \mathrm{ist}(12) \text { \} } \\
& \text { Dispose (11); } \\
& \text { Dispose }(12) \text {; }
\end{aligned}
$$

- In analy sis to use the Erame Rule we need to compute R
- Fame nerence oroblem given A and B compute X such that 4 基 3 .

Frame Inference

$$
\begin{aligned}
& \{1 \text { ist }(11) * 1 \text { ist }(12) \text { \} } \\
& \text { Dispose (11) ; } \\
& \text { Dispose (12) }
\end{aligned}
$$

- In analysis to use the rame Rule we need to compute R
- rame nerence oroblen given A and B compute X such that 4 o bux

Example:

Frame Inference

$$
\begin{aligned}
& \{1 \text { ist }(11) * 1 \text { ist }(12) \text { \} } \\
& \text { Dispose (11) ; } \\
& \text { Dispose (12) } \\
& \text { RevelQ }
\end{aligned}
$$

- In analysis to use the r rame Bule we need to compute R
- rame nerence oroblen given A and B compute X such that 4 o bux

Example:

Frame Inference

$$
\begin{aligned}
& \{1 \text { ist }(11) \times 11 \mathrm{st}(12) \text { \} } \\
& \text { Dispose (11) ; } \\
& \text { Dispose (} 12 \text {) }
\end{aligned}
$$

- In analysis to use the r rame Bule we need to compute R
- Frame infence poblentiven A and B compute X such that 4 o bux

Example:

Frame Inference


```
Dispose (11);
{emp*1ist:(12).}
Dispose(12);
```

ReGCRU, 4 Rame Rule

- In analy sis to use the Erame Rule we need to compute R
- Frame hiferene oroblen given A and B compute X such that 4 明期

Example:

Abduction

Abductive Inference (Charles Peirce, circa 1900, writing about the scientific process)

"Abduction is the process of forming an explanatory hypothesis. It is the only logical operation which introduces any new idea"
"A man must be downright crazy to deny that science has made many true discoveries. But every single item of scientific theory which stands established today has been due to Abduction."

Abduction for Space Invader

Abduction for Space Invader

Abduction for Space Invader

Abduction liference:
given A and B compute X such that

$$
\text { Mi } 1 \text {, }
$$

Abduction for Space Invader

Abductioninference
given a and Benpute such that
Kax

Example:

$$
\text { S S S } \quad \text { (} 1 \text {) }
$$

Abduction for Space Invader

Abductioninference given a and Benpute such that
4xatares

Examples

Abduction for Space Invader

Abductioninference given a and Benpute such that
Katrack

Examples

Abduction is not enough

If heaps A and B are incomparable abduction and frame inference alone are not enough.
We need to synthesize both missing portion of state and leftover portion of state

HeadA

$$
x \mapsto y \quad \star \quad y \mapsto y^{\prime}
$$

$$
y \mapsto y^{\prime} \quad * \quad w \mapsto n i l
$$

Heap B

Abduction is not enough

If heaps A and B are incomparable abduction and frame inference alone are not enough.
We need to synthesize both missing portion of state and leftover portion of state

heapa

Antifframe
$\frac{x \mapsto y *}{\text { Frame }}$

$$
y \mapsto y^{\prime} \quad * \quad w \mapsto \text { nil }
$$

Heap B

Bi－Abduction

Synthesizing both missing portion of state（ant faanie）and leftover portion of state（franie）give rise to a new notion

Bi－Abduction．

given A and B compute ？a fiffanapand afiame such that
月イレス

Bi-Abduction

Synthesizing both missing portion of state (antefanac) and leftover portion of state (franie) give rise to a new notion

Bi-Abduction.

given A and B compute? anfifanine and Pifame such that
4/

Example:

$$
\text { x. 0. } 0 \text { ow ant frame list }(x) * \operatorname{list}(y) * \text { ? frame }
$$

Bi-Abduction

Synthesizing both missing portion of state (ant faane $)$ and leftover portion of state (franie) give rise to a new notion

Bi-Abduction.

given A and B compute ?a afifanate and pirame such that
4/

Example:

Bi-Abduction

Synthesizing both missing portion of state (antlffanhe) and leftover portion of state (franie) give rise to a new notion

Bi-Abduction.
given A and B compute? anfifane and firane such that
(月

Example:

Our POPE09 paper defines a theorem prover for Bi-Abduction

Bi-Abductive spec synthesis

$$
\text { Pre lit }(x) \text { (x) }
$$

1 void p(list item * y) tienp
2 list item * x *

4 z malloc(sizeof(list item)) z- taillo:
5 foo (x, y)
6 foo (x,z);
7 澼

Bi-abductive prover

Bi-Abductive spec synthesis

$$
\text { Pre } 1 \text { (xt }
$$

1 void p(list item * y) tienp
2 , list item: $*$, *

5 foo (x, y)
6 foo (x, z))
7 7 3

Bi-aboluctive prover

Bi-Abductive spec synthesis

> Pre

1 void p(list item *y) tienp
2

5 fotion x, y)
6 foo (x, z))
7: 3

Bi-aboluctive prover

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postidist (x)

1. void p(list item *y)

2 list item *x; *z
3 x malloc(sizeof(list item)) x tail 0 o 0 enp

5 foo (x, y)
6 foo (x, z);

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist(y) }
$$

Postidist (x)

1. void p(list item *y)

2 list item *x; *z
3 x malloc(sizeof(list item)) x tail 0 o 0 enp

5 foo
6 foo (x, z))

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postolist (x x

1 void p(list item * y) 民ienp
2 list item * x
3 x malloc(sizeof(list item)) x tail 0 o 0 enp

6 foo (x, z))

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postolist (x x

1 void p(list item * y) 民ienp
2 list item *x; *z
3. x malloc(sizeof(list item)) x $x>$ tail 0 \% 0 enp

6 foo (x, z)

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postolist (x x

1. void p(list item * y) f enp

2 list item *x; *z
3. x malloc(sizeof(list item)) x $x>$ tail 0 \% 0 enp

6 foo (x, z);

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postolist (x x

1. void p(list item * y) f enp

2 list item *x; *z
3. x malloc(sizeof(list item)) x $x>$ tail 0 \% 0 enp

6 foo (x, z);

Bi-Abductive spec synthesis

$$
\text { Pre list(x) }{ }^{*} \text { dist (y) }
$$

Postolist (x x

1. void p(list item * y) f enp

2 list item *x; *z
3. x malloc(sizeof(list item)) x $x>$ tail 0 \% 0 enp

6 foo (x, z))

Bi-Abductive spec synthesis

> Pre

1 void p(list item *y) tienp
2

5 fotion x, y)
6 foo (x, z))
7: 3

Bi-aboluctive prover

Bi-Abductive spec synthesis

> Pre list

1 void p(list item *y) (Semp
2 list item*x * *
3. x malloc(sizeof(istigitem))

4 z-malioc(sizeof(ist 4 tem) $) ~ z \rightarrow$ tail $0,0, \quad 0,0$
5. foo(x,y)) 4 ,

6 foo $\mathrm{fo}(x, z)$;
7: 3

Bi-abductive prover

$$
\text { xavak } 0 \text { 0 * antu frame list }(x) * \operatorname{list}(y) * \text { ? frame }
$$

Bi-Abductive spec synthesis

$$
\text { Pre } 1 \text { it }
$$

1 void p(list ${ }^{\text {titem }}$ *y) $\{$ denp
2 list item*x, *

5 foo (x, y)
6 foo (x, z))
7:3

Bi-abductive prover

$$
x+0 * z+0 \times \operatorname{list}(y) \mid \operatorname{list}(x) * \operatorname{list}(y) * z \mapsto 0
$$

Bi-Abductive spec synthesis

> Pre list

1 void p(list item $\%$) .
2 list item * x

4 z malioc(sizeof(ist 4 tem) $) ~ z \rightarrow$ tail $0,0, a, 0$

6 600 $x, z)$)

Bi-abductive prover

$$
x \int 0 * z=0 * \operatorname{list}(y) \mid \operatorname{list}(x) * \operatorname{list}(y) * z \mapsto 0
$$

Bi-Abductive spec synthesis

> Pre list

1-void p(list item *y) $\{$ fist (z)
2 list item * x
3 x malloc(sizeof(iist item)) x> tail 0 otionp

5 foo (x, y)
6. foo(x) 7)

Bi-aboluctive prover
list (x). 6 0 0 antiframe $-\operatorname{list}(x) * \operatorname{list}(z) * ?$ frame

Bi-Abductive spec synthesis

> Pre list

1-void p(list item *y) \{fot
2 list item * x
3 x malloc(sizeof(iist item)) x> tail 0 otionp

5 (ifoo(x, y)
6. foo(x) 7)

Bi-abductive prover

$$
\text { list }(x) * z+0 * \operatorname{emp} \mid \text { list }(x) * \operatorname{list}(z) * \mathrm{emp}
$$

Bi-Abductive spec synthesis

> Pre list

1-void p(list item *y) \{fot
2 list item * x

5 foo (x, y)
6.for foz (x)

7: 3
list (x)

Bl-aboluctive prover

$$
\operatorname{list}(x) \times z+0 * \operatorname{emp}+\operatorname{list}(x) * \operatorname{list}(z) * \mathrm{emp}
$$

General Schema Compositional Analysis

For function in the program we compute tables of specs

The computation follows the call graph (start from leaves)

Recursive function are analyzed with an iterative method until it reaches fixed point

Running on really big code

Test for precision run on Firewire device driver and small recursive procedures handling nested data structures

freeattvalues

freeattvalues

freeattvalues

freeentryatts

freeattvalues

freeentryatts

e:

freeattvalues

freeentryatts

NWHat

freeattvalues

freeentryatts

e:

The bi-abduction manifesto

- Frame inference 4 , $B *$ allows an analyzer to use small specs
- Abduction a * * - B helos fosyntiesize small specs
- Their combination, bi abouction
Kax
helps to achieve compositional bottom-up analysis. Furthermore t brings the benefits of local reasoning (as introduced in Separation Logic) to automatic program verification

