
Realisability of

Message Sequence Charts

obtaining « easily » distributed implementation

Blaise Genest, CNRS (Singapore, Rennes)

IRISA Lab:

CNRS

Univ Rennes 1

INRIA

IPAL lab: CNRS+

NUS (Thiagarajan…),

A*STAR/I2R (R&D)

Work around in distributed systems (games, control, verif.)

INTRODUCTION

Why distributed implementation?

Communication protocol:

Control on 2 different

processes (USB)

CardReader()

repeat

send(data) to pc

PC()

repeat

receive(data) from CardReader

Because the world is distributed,

communicant…

Hard to write distributed implementation

Difficult to write a distributed algorithm

Produce it automatically from “sequential” spec?

Distributed programs

Globally parallel

Human way of thinking

Globally sequential

Q: Which model for sequential specification, for distributed algorithm?

Kind of models?

Most asyncrhonous system possible

(exit Petri Nets, Mazurkiewicz trace, product of automata since

actions are blocking/synchronizing)

⇒Based on messages, with separeted send and receive.

⇒FIFO Channel between each pair of process

Can always send, can receive from a channel p only if non empty

Ex: telecomunication protocols etc.

Example of a specification hard to distribute

Specification:

2 Processes: 0, 1.

Both Processes can send a message to the other process.

After a message have been received, a new message can be sent.

But no message crossing.

Accept at any point when no message sent and not yet received.

Example of a specification hard to distribute

Q: How to modelize it with a computer science model?

0 1 0 1

Specification:

2 Processes: 0, 1.

Both Processes can send a message to the other process.

After a message have been received, a new message can be sent.

Accept at any point when no message sent and not yet received.

2 scenarios

Example of a specification hard to distribute

Q: How to modelize it with a computer science model?

0 1 0 1

Graph of scenarios

Example of a specification hard to distribute

Distributed Implementation:

Each process = Finite Automaton Ai with sends and receives

a =

b =
c =

0 1

0 1

0 1

Accept if both process accepts

Example of a specification hard to distribute

(ab or ba) not possible to implement with

no information exchange between processes

c looks like something legitimate for each process.

a =

b =

c =

0 1

0 1

0 1

ab ba

Example of a specification hard to distribute

Distributed Implementation:

Each process = Finite Automaton Ai

different setting:

State of each process:

- attached to mesages sent by the process

- determined deterministically

Example of a specification hard to distribute

(ab or ba) easy to implement with deterministic additional information

a =

b =

ab =

0 1

0 1

0 1

c =

0 1

ab

ab

aa
a
ab

each process checks that

msg info extends local info

ǫ

a

process 0 witness a problem and reject.

Each process

remembers what

it saw and tags

messages with

this memoryab

Example of a specification hard to distribute

(a,b)* can be implemented with deterministic additional information.

Pb: Cannot remember all the scenario (infinite states)

remember last actions+current action!

a = b =

0 1 0 1

0 1 0 1

ba b
ba

ba

aa
aa

aa

aa

aa

ab
ab

aa

ab

ba ba

aa aa

b

ba

bb
ab

X

Example of a specification hard to distribute

Distributed Implementation:

Each process = Finite Automaton Ai

different setting:

State of each process:

- attached to mesages sent by the process

- determined non deterministically

=> Can make choices for others.

Example of a specification hard to distribute

0 1 0 1

Process can add a non deterministic bounded information

with their messages. => can make choices.

Here, process announces next scenario.

0 1 0 1

a a

b b

More powerful but

sometimes not good

implemetation

(ex: client chooses whether

server grants him access)

a b

Different settings:

a) Nothing added to messages

b) Deterministic additional information

c) Non deterministic additional information

Easier
Less

hypothesis

Specification and

Implementation

Models

[Genest, Muscholl, Peled :

Survey 2003/2004 in Concurrency and Petri Nets 2003]

Message Sequence Charts (MSCs)

Partial order ≤ on events a,b,c…

b,c incomparable

Process Order: a <0 c

Message Order: a < b

(1st send from 0 to 1 received
By 1st receive on 1 from 0)

time

MSC

0

a

b

c

d

Total order = linearization = execution
a b c d or a c b d

1

Widely used: TelCo companies, UML sequence diagram, ITU norm, SDL

Also in distributed algorithms etc.

Any linearization w=> unique MSC Mw : define [w] = {v |Mv=Mw}

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

0 1 0 1

A B

0 1

Composition: glue scenario

Along same process line

a

b
c

e

h

d

f
g

b (first scenario) can happen (in time) after e (third scenario)

a b c d e f g h but also a c e b d f g h

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

0 1 Define language L(G) as set of executions

of MSCs.

QUIZZ: Regular or not? What is L(G)?

G

s
r

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

0 1

Define language L(G) as set of executions

of MSCs.

G

s
r

Define automaton AG by choosing

a linearisation of the scenario in the node.

L(AG) is called a set of representatives for L(G).

Then L(G) = [L(AG)], closure of a regular language.

s

r

AG

Communicating Automaton

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

One finite state automata

For each process.

Actions: sends from another process

and receives from another process

with content.

Implicit: communication buffers

A:

Communicating Automaton

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

Configuration: states of 0,1 and

Buffer content (tuple of words)

A:

Communicating Automaton

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

Implicit

FIFO

buffers

0 1

a
b

0!1 0!1 1?0 1?0

Execution (forget additional data):

L(A): set of executions possible

(reaching final states+empty buffer)

0!1 0!11?0 1?0

Configuration: states of 0,1 and

Buffer content (tuple of words)

A:

Realizability

Realizability question: Given MSC-graph G,

find Communicating automaton A with L(A)=L(G) (if possible).

Notice: [L(A)] = L(A) and [L(G)] = [[L(AG)]]=[L(AG)] = L(G)

Both are closed by commutation, none are regular in general.

Realizability

Realizability question: Given MSC-graph G,

find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are non regular MSC-graphs that can be realized

QUIZZ: give an example.

Realizability

Realizability question: Given MSC-graph G,

find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are MSC-graphs that cannot be realized.

QUIZZ: give an example.

Restrictions, Regularity and more

[Rajeev Alur, Mihalis Yannakakis: CONCUR 99]

[Anca Muscholl, Doron Peled : MFCS 99]

[Blaise Genest, Anca Muscholl, Helmut Seidl, Marc Zeitoun:

ICALP 2002 & JCSS 2006]

[Genest, Kuske, Muscholl : Fundamentae Informaticae 2007]

Restrictions

0 3

G

1 2

Communicating graph of a MSC: 1 node per process, 1arrow if message

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected

regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected

Cannot be realized

0 1 2 3 Not weakly connected

Restrictions

Communicating graph of a MSC: 1 node per process, 1arrow if message

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected

regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected

Can be realized

0 1
weakly connected

0 1

G

Restrictions

Communicating graph of a MSC: 1 node per process, 1arrow if message

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected

regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected

Can be realized

strongly connected

0 1

G

0 1

Restrictions

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected

regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected

If G is a regular MSC-graph, then L(G) is regular.

If G is a globally cooperative MSC-graph, then for all B,

Set of B bounded executions of L(G) is regular.

Testing any restriction is co NP-complete

Regularity

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

A:
communicating automaton A

L(A) is regular iff channels

are bounded: there exists B,

for all w ∈ L(A),for all prefix v of w:

Number of sends in v

≤ B + number of receives in v

Loop: Same number of sends and receives

Finite Automaton

for L(A)

Regularity

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

A:
communicating automaton A

L(A) is regular iff channels

are bounded: there exists B,

for all w ∈ L(A),for all prefix v of w:

Number of sends in v

≤ B + number of receives in v

Undecidable to test if

L(A) is regular (=bounded)

Undecidable to test if L(A) is B-bounded

(comm. Automata are Turing powerful:

reduction to L(A)= ∅)

Regularity

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

A:
Decidable to test if Lpref(A) is B bounded

(Lpref considers all states final and accepts

even if some message not yet received)

-Construct Lpref (A) up to bound B+1.

-Check whether bound B+1 is reached

by an execution.

This execution is in Lpref(A)

and is not B bounded.

Else L(A) ⊆ Lpref(A) are B-bounded

Deterministic Communicating Automata

a b

a b

!1(b)!1(a)

?1(b)?1(a)
Process 0

Process 1

?0(b)?0(a)

!0(b)!0(a)

A:

deterministic if when

2 transitions from same state

labeld by !p(m) and !p(n),

then m=n.

QUIZZ: deterministic?

Realizability

a) No message content

b) Deterministic additional information

c) Non deterministic additional information

Realizability question: Given MSC-graph G,

find Communicating automaton A with L(A)=L(G) (if possible).

No message content

[Rajeev Alur, Kousha Etessami, Mihalis Yannakakis: ICALP 2001

& TCS 2003]

[Markus Lohrey : CONCUR 2002 & TCS 2003]

Example of a specification hard to distribute

(ab or ba) not possible to implement with

no information exchange between processes

c looks like something legitimate for each process.

a =

b =

c =

0 1

0 1

0 1

ab ba

Intuition

0 1 0 1

G

Look at the projection A0,A1 of G on each process 0 and 1.

Both A0,A1 are regular language => communicating automaton A.

!1

?1

A0:

!0

?0

A1:

Claim:

G is realizable iff

L(A)=L(G), and then

A is an implementation.

Proof

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Assume that ∃ communicating automata

with local final states B with L(B)=L(G)

By construction, L(G) ⊆ L(A). Let us show that L(A) ⊆ L(G)

Let w ∈ L(A).

Then for all p, πp(w) ∈ L(Ap)= L(πp(G)):

∃ x ∈ L(G)=L(B) with πp(x) =πp(w).

It means that πp(x)=πp(w) reaches a final state of Bp.

Hence w reaches a final state on every process of Bp:

w ∈ L(B)=L(G).

Undecidability

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Theorem: Checking whether L(G) is realizable is undecidable

(even if G is regular and L(AG)=L(G))

Reduction to PCP: words (vi,wi) on {a,b}*

Ex: (v0,w0)=(ab,a) and (v1,w1) = (a,ba)

0

1

a
b

a

PCP has a solution iff not realizable

v w

∈ L(A)

∉ L(G)

1
b
a

0
a

1
b
a

0
a

w v

Some Decidability results

Theorem: Checking whether L(G) is realizable is co-NEXPTIME

when G has no loop (finite set of MSCs).

Theorem: Checking whether Pref(L(G)) = Lpref(A)

is EXPSPACE-complete when G is globally-cooperative

(includes regular MSC-graphs). In general, undecidable.

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Intuition

Intuition: Lpref(A) = Pref(L(G))?

Regularity of G gives a bound on number of messages in transit for

executions of G.

⇒Check whether all executions of Lpref(A)) are bounded.

If not, Lpref(A) ≠ Prefix(L(G)).

If yes, test equality of two regular sets (L(G) exponential in |G|).

Theorem: Checking whether Pref(L(G))= Lpref(A)

is EXPSPACE-complete when G is globally-cooperative

(includes regular MSC-graphs). In general, undecidable.

deterministic additional

information

[Henriksen, Madhavan Mukund, Narayan Kumar, Mihind Sohoni,

P.S.Thiagarajan : CONCUR-ICALP 2000; I&C 2005]

[Dietrich Kuske STACS 2002, I&C 2004]

Henriksen et Al. Theorem

Deterministic
bounded

Communicating
automaton

regular
CMSC-graph

MSO
formula
that are
bounded

regular set of
linearizations

All these regular (thus bounded)

formalisms are equivalent. Every

regular MSC graphs are realizable!

Difficult part

Mazurkiewicz trace Theory

Asyncrhonous
Automaton

Loop connected
Rational

set of traces

MSO
formula

on traces

Regular set of
traces

Don’t reinvent the wheel,

lift known results.

Reasoning with messages is hard,

try to break down problem

Zielonka

Theorem ‘87

Ochmanski theorem ‘83

Mazurkiewicz trace Theory

Given: Alphabet Σ and Symetric Independance relation I ⊆ Σ × Σ

Define ∼ smallest equivalence relation containing

uabv ∼ ubav when (a,b) ∈ I

Traces are equivalence class of ∼ over words of Σ*

Ideas: words � linearizations/executions

Traces � MSCs

Encode commutations of MSCs into fixed Independance alphabet Σ,I

Kuske’s Alphabet

a b ∼I b a
a b ∼I b a

Ω = a,a,b,b,c,c,d,dAlphabet:

ab ab cd ∼IIII a a b b c d

a

a
b

c

d

b

Lin(M)=[ab ab ab]IIII

commutation

MSC 2-bounded

a c ∼I c a

d b ∼I b d

red a can be received only by a red b

a

b

Kuske’s Alphabet

a b ∼I b a
a b ∼I b a

Ω= a,a,b,b,c,c,d,d
(a=0!1, b= 1?0, c=1!0,d=0?1)

Alphabet:

L(G) = πΣ[L(CG)]IIII

a c ∼I c a
d b ∼I b d

0 1

G

c d ∼I d c
d c ∼I c d

CG is loop connected since loops of G are strongly connected.

Ochmanski: L(G) is regular. Zielonka: ∃ AA, L(AA)=L([CG])

AG CG

Representatives on Σ

On Ω

L(G) is regular and

2 bounded

Asynchronous Automaton simulation

Simulation by a communicating automaton A
of deterministic Asyncrhonous Cellular Automaton AA:

each event is labeled by a state k∈ K (K finite set)
new state depends only upon states of dependent letters

a

a
b

c

d

b

a

b

k1
k1

k2
k3 k3

k4

k2

k7 computed using k2

k5

For each letter, local state remembers

state of last event with that letter.k4

k5k6

k7

Communicating automaton A

a

a
b

c

d

b

a

b

k1
k1

k2
k3 k3

k4

k2 k5

For each B bounded linearization w,

w ∈ L(A) iff w ∈ L(AA).k4

k5k6

k7

Final states of communicating automaton A

= final states of asynchronous automaton AA

So L(A)
Σ*B = L(AA)
 ΣB*= L(G)
ΣB*=L(G)

Set of B bounded lin.

Communicating automaton A

So L(A)
Σ*B = L(AA)
 ΣB*= L(G)
ΣB*=L(G)

Build AB with w ∈ L(AB) iff Mw is B bounded.

Then L(AxAB)=L(G)

Idea: Each process counts how many

messages in transit up to B+1.

If reaches B+1 at some point,

then reject, else accepts.

1

1
2

2

2

2-2 = 0

1

0

1

Nbr received

Non deterministic additional

information

[Blaise Genest, Dietrich Kuske, Anca Muscholl I&C 2006]

Communicating graph of a MSC: 1 node per process, 1arrow if message

Can be realized

0 1 weakly connected

0 1

G

Globally cooperative MSC-graphs

Globally cooperative but not regular and still realizable.

Idea: Extends Henrinksen et al.

Globally cooperative MSC-graphs

There are globally cooperative MSC-graphs which cannot be realized

with deterministic communicating automata.

P S Q

Spec:

After the n-th receive of S,

process P sends p(n) messages.

process Q sends q(n) messages.

p(n)=q(n) ∈ {1,2}

Easy to implement with non determinism (S chooses p(n)=q(n)).

There are globally cooperative MSC-graphs which cannot be realized

with deterministic communicating automata.

P S Q
Assume A deterministic

implementing G.

A has n states on each process.

There exists two sequences

(ai);(bi), i∈{1.. ln(n5)} of p(n)

after which states of all process

are the same.

A has to accept mix of (ai) on P

and (bi) on Q, contradiction

Globally cooperative MSC-graphs

Globally cooperative MSC-graphs

A is said « existentially bounded» if ∃ regular set of representative.

All MSC-graphs are existentially bounded (Remember AG).

Globally cooperative have furthermore LinB(A) regular set

of representatives

An ∃ bounded communicating automaton A has LinB(A)

regular set of representatives.

Need candidates for class of Communicating automata

equivalent with globally cooperative MSC-graphs.

Genest et Al. Theorem

(Non –Deterministic)
∃ bounded

Communicating
automaton

Globally
cooperative

CMSC-graph

MSO
formula
that are
∃ bounded

LinB(G) regular
set of

representatives

Reuse Same Kuske Encoding!

G is ∃∃∃∃-2 bounded.
a

b

G

Reuse same Kuske Encoding!

a b ∼I b a

a b ∼I b a

Ω = a,a,b,bAlphabet:

ab ab ab ∼IIII a a b a b b ∼IIII a a a b b b

a

a b

M

a

b

b

Lin2(M)=[ab ab ab]IIII

commutation

Trace alphabet gives us only B bounded linearizations, not all

Kuske Encoding

a

a
m

sg

re
v

⋖P

⋖P

a b

b

⋖C

⋖C

b

Associated
Partial order:

rev associate i-th receiver
With i+Bth send on same channel

Simulation of the Cellular AA

(k
1)

k1

k2

k3
(k

3)

k4
(k

5 ,GUESS)

k5

k6

test that GUESS=k2

Simulate with non deterministic Communicating automaton:

Will guess value for rev, and check them later.

To compute k5, needs value of k2: no way to know it for sure:

Guess it, and chek it later.

Communicating automaton A

L(A)
Σ*B = L(AA)
 ΣB*= L(G)
ΣB*=L(G)

Build AB with w ∈ L(AB) iff Mw has a B bounded linearization.

Then L(AxAB)=L(G)

e⋖⋖⋖⋖a f if e <p f and

f first event of type a
New relation

M is ∃–B-bounded iff (rev ∪ msg ∪ ⋖⋖⋖⋖a) is acyclic

Prop: If cycle in (rev ∪ msg ∪ ⋖⋖⋖⋖a), then a cycle of bounded size

look for cycle in this relation (need to guess for rev).

Idea:

Conclusion and Future Work

Realizability: Many settings, many results.

This talk: only a glimpse of all the results.

Still too expansive (time to check, size of the implementation)

or too restricted (class to implement from).

Other results:

Weaker results for very generic system (local EMSO) and

Small non deterministic implementation for very restricted systems

(local choice MSC-graphs, incomparable with regular MSC-graphs)

In term of techniques: lift result of simpler specifications (Traces).

Future work: handle distributed games (non controllable events,

specification is only set from which to choose strategy),

Main problem generate a distributed strategy.

