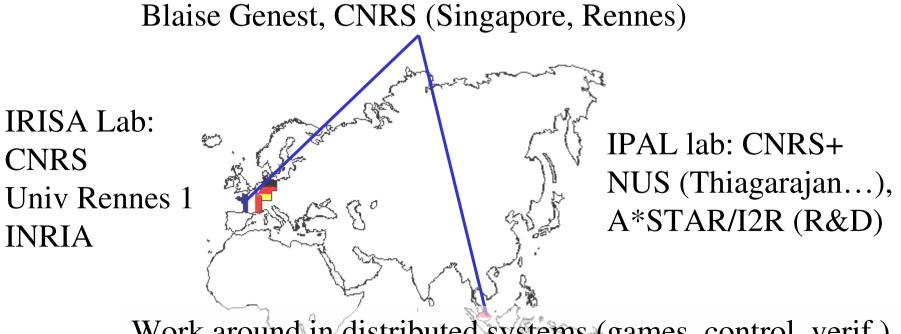
Realisability of Message Sequence Charts

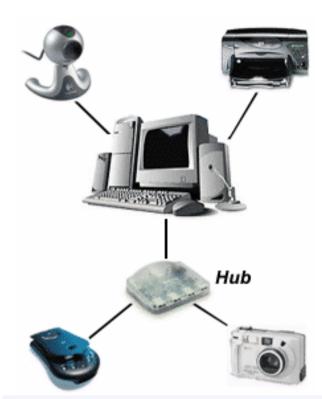
obtaining « easily » distributed implementation



Work around in distributed systems (games, control, verif.)

INTRODUCTION

Why distributed implementation?



Because the world is distributed, communicant...

Communication protocol: Control on 2 different processes (USB)

CardReader() repeat send(data) to pc PC() repeat receive(data) from CardReader

Hard to write distributed implementation

Distributed programs

Human way of thinking

Globally parallel

Globally sequential

Difficult to write a distributed algorithm

Produce it automatically from "sequential" spec?

Q: Which model for sequential specification, for distributed algorithm?

Kind of models?

Most asyncrhonous system possible (exit Petri Nets, Mazurkiewicz trace, product of automata since actions are blocking/synchronizing)

⇒Based on messages, with separeted send and receive. ⇒FIFO Channel between each pair of process Can always send, can receive from a channel p only if non empty

Ex: telecomunication protocols etc.

Specification:

2 Processes: 0, 1.

Both Processes can send a message to the other process.

After a message have been received, a new message can be sent.

But no message crossing.

Accept at any point when no message sent and not yet received.

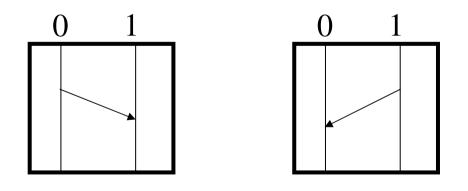
Specification:

2 Processes: 0, 1.

Both Processes can send a message to the other process.

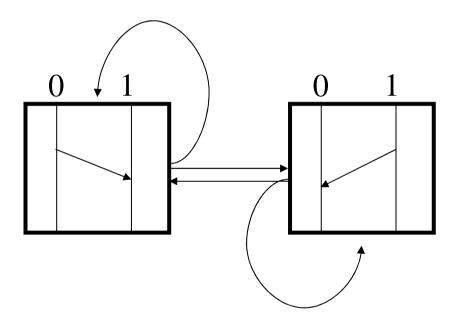
After a message have been received, a new message can be sent. Accept at any point when no message sent and not yet received.

Q: How to modelize it with a computer science model?



2 scenarios

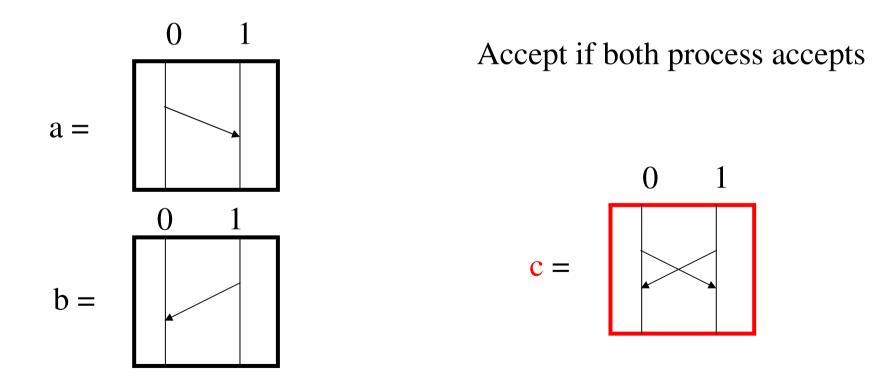
Q: How to modelize it with a computer science model?

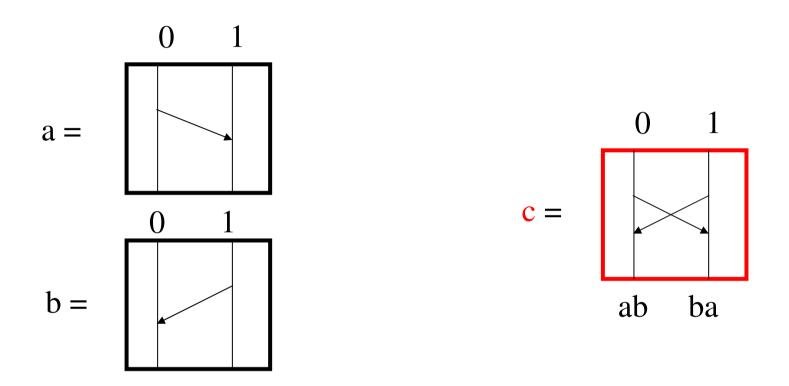


Graph of scenarios

Distributed Implementation:

Each process = Finite Automaton A_i with sends and receives





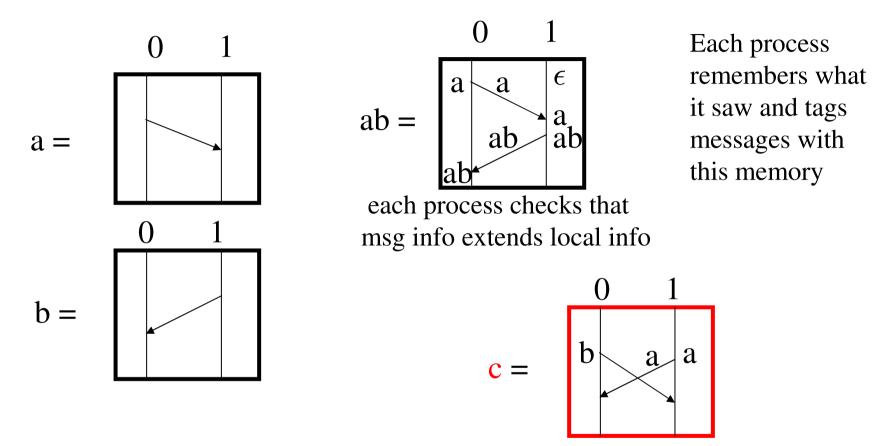
(ab or ba) not possible to implement with no information exchange between processes

c looks like something legitimate for each process.

Distributed Implementation: Each process = Finite Automaton A_i

different setting: State of each process:

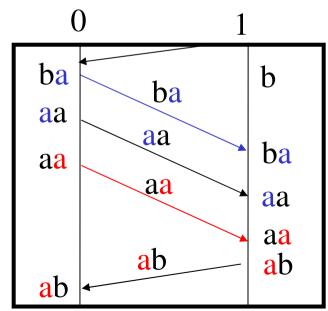
- attached to mesages sent by the process
- determined deterministically

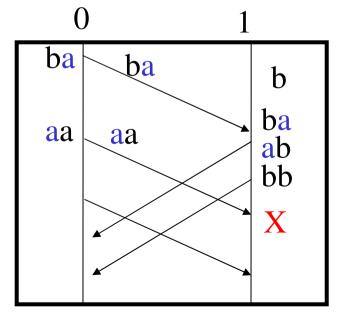


process 0 witness a problem and reject.

(ab or ba) easy to implement with deterministic additional information

(a,b)* can be implemented with deterministic additional information.Pb: Cannot remember all the scenario (infinite states) remember last actions+current action!





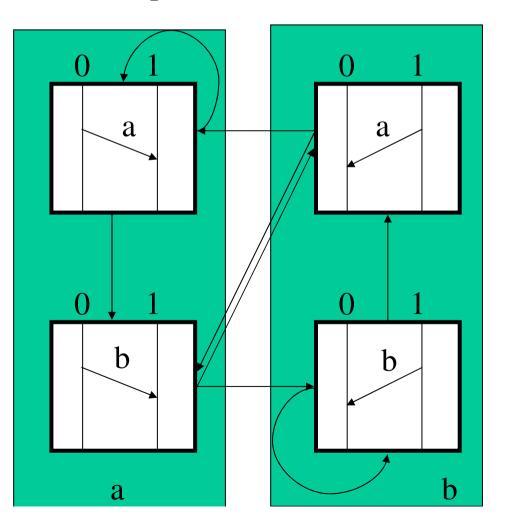
Distributed Implementation: Each process = Finite Automaton A_i

different setting: State of each process:

- attached to mesages sent by the process
- determined non deterministically

=> Can make choices for others.

Process can add a non deterministic bounded information with their messages. => can make choices. Here, process announces next scenario.



More powerful but sometimes not good implemetation (ex: client chooses whether server grants him access)

Different settings:

Easier

- a) Nothing added to messages
- b) Deterministic additional information
- c) Non deterministic additional information

Less hypothesis

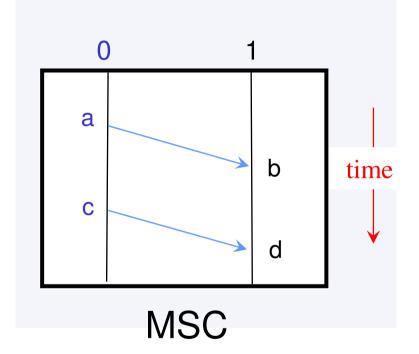
Specification and Implementation Models

[Genest, Muscholl, Peled :

Survey 2003/2004 in Concurrency and Petri Nets 2003]

Message Sequence Charts (MSCs)

Widely used: TelCo companies, UML sequence diagram, ITU norm, SDL Also in distributed algorithms etc.



Partial order \leq on events a,b,c...

b,c incomparable

Process Order: $a <_0 c$

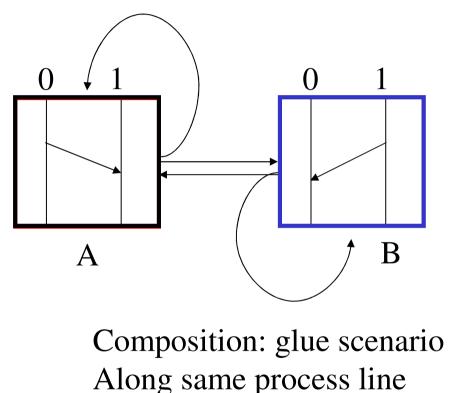
Message Order: a < b (1st send from 0 to 1 received By 1st receive on 1 from 0)

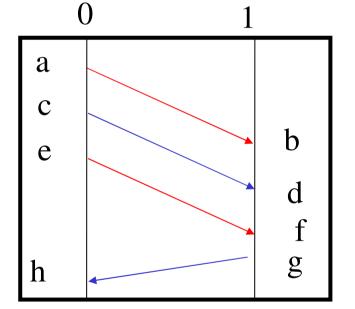
Total order = linearization = execution a b c d or a c b d

Any linearization w=> unique MSC M_w : define $[w] = \{v \mid M_v = M_w\}$

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios



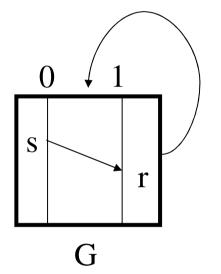


b (first scenario) can happen (in time) after e (third scenario)

abcdefgh but also acebdfgh

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios

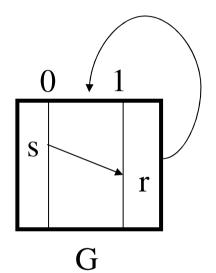


Define language L(G) as set of executions of MSCs.

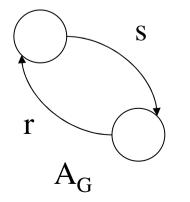
QUIZZ: Regular or not? What is L(G)?

MSCs-graphs

Graphes whose nodes are MSCs = Rational languages of Scenarios



Define language L(G) as set of executions of MSCs.



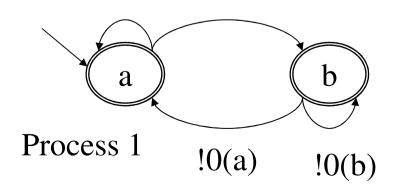
Define automaton A_G by choosing a linearisation of the scenario in the node. $L(A_G)$ is called a set of representatives for L(G). Then $L(G) = [L(A_G)]$, closure of a regular language.

Communicating Automaton

$$\begin{array}{c} 11(a) & A: \\ 11(b) & & 1(b) \\ \hline a & & b \\ \hline a & & b \\ Process & 0 & 21(a) & 21(b) \end{array}$$

One finite state automata For each process.

Actions: sends from another process and receives from another process with content.



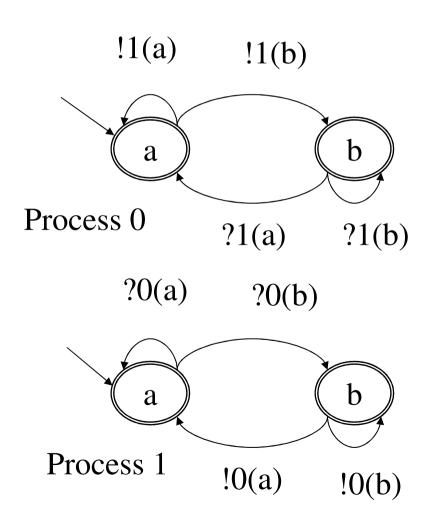
?0(b)

?0(a)

Implicit: communication buffers

Communicating Automaton

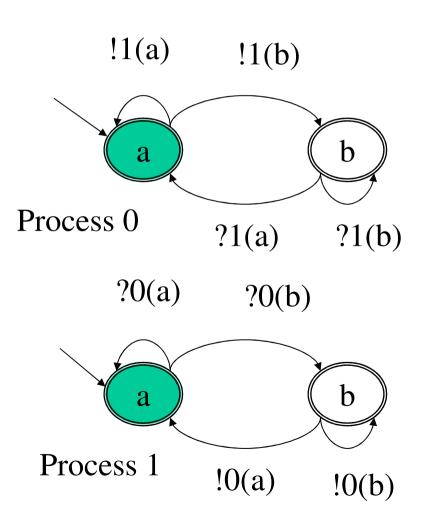
A:



Configuration: states of 0,1 and Buffer content (tuple of words)

Communicating Automaton

a



Configuration: states of 0,1 and Buffer content (tuple of words)

Implicit

buffers

FIFO

Execution (forget additional data):

0!1 0!1 1?0 1?0

L(A): set of executions possible (reaching final states+empty buffer) 0!1 1?0 0!1 1?0

Realizability

Realizability question: Given MSC-graph G, find Communicating automaton A with L(A)=L(G) (if possible).

Notice: [L(A)] = L(A) and $[L(G)] = [[L(A_G)]] = [L(A_G)] = L(G)$ Both are closed by commutation, none are regular in general.

Realizability

Realizability question: Given MSC-graph G, find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are non regular MSC-graphs that can be realized

QUIZZ: give an example.

Realizability

Realizability question: Given MSC-graph G, find Communicating automaton A with L(A)=L(G) (if possible).

Notice: There are MSC-graphs that cannot be realized.

QUIZZ: give an example.

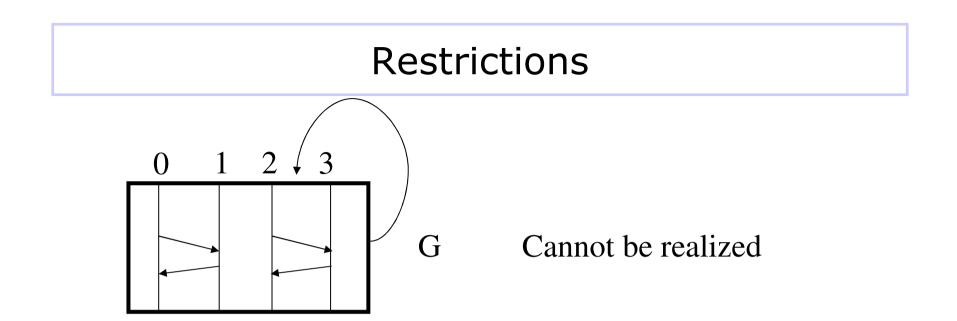
Restrictions, Regularity and more

[Rajeev Alur, Mihalis Yannakakis: CONCUR 99]

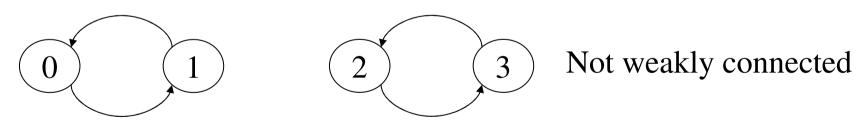
[Anca Muscholl, Doron Peled : MFCS 99]

[Blaise Genest, Anca Muscholl, Helmut Seidl, Marc Zeitoun: ICALP 2002 & JCSS 2006]

[Genest, Kuske, Muscholl : Fundamentae Informaticae 2007]



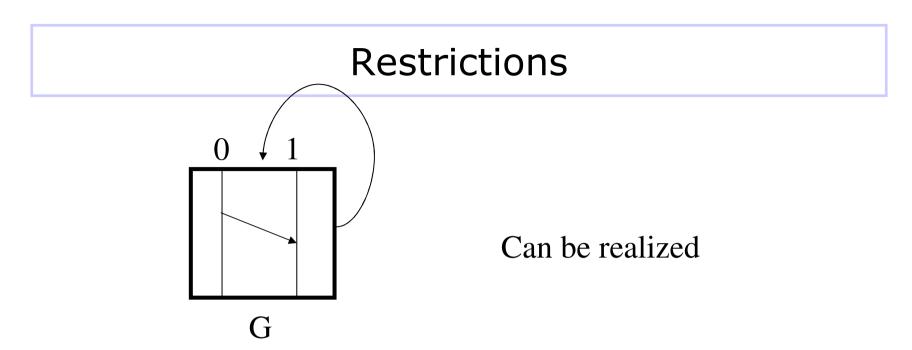
Communicating graph of a MSC: 1 node per process, 1 arrow if message



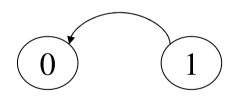
globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected



Communicating graph of a MSC: 1 node per process, 1arrow if message

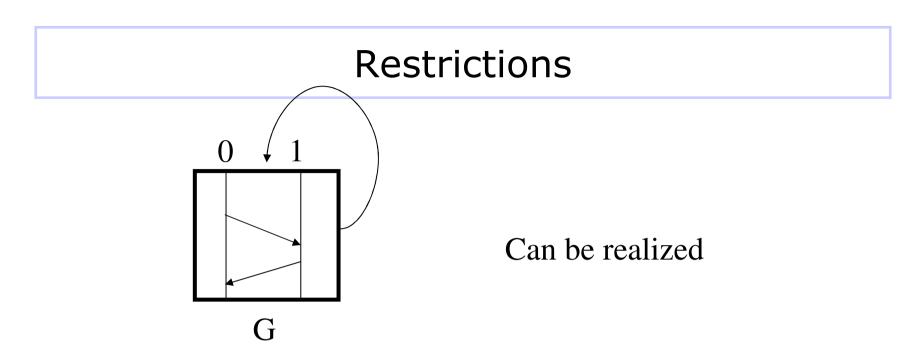


weakly connected

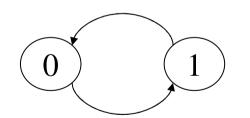
globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected



Communicating graph of a MSC: 1 node per process, 1 arrow if message



strongly connected

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected regular MSC-graphs (also called bounded):

Each loop (strongly connected component) of G is strongly connected

Restrictions

globally-cooperative MSC-graphs:

Each loop (strongly connected component) of G, is weakly connected regular MSC-graphs (also called bounded):

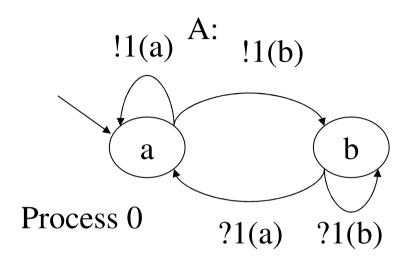
Each loop (strongly connected component) of G is strongly connected

If G is a regular MSC-graph, then L(G) is regular.

If G is a globally cooperative MSC-graph, then for all B, Set of B bounded executions of L(G) is regular.

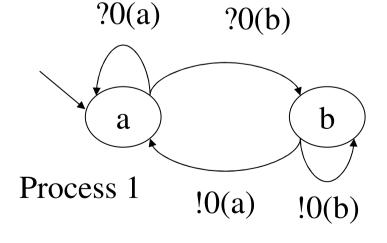
Testing any restriction is co NP-complete

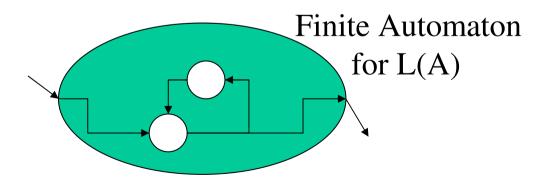
Regularity



communicating automaton A

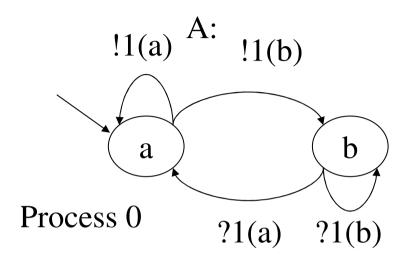
L(A) is regular iff channels are bounded: there exists B, for all $w \in L(A)$,for all prefix v of w: Number of sends in v $\leq B$ + number of receives in v





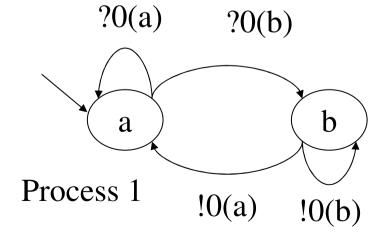
Loop: Same number of sends and receives

Regularity



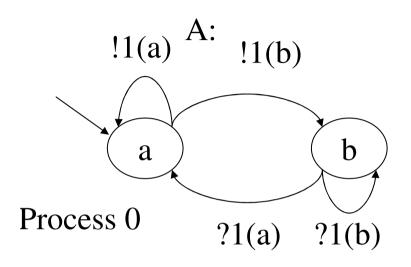
communicating automaton A

 $\begin{array}{l} L(A) \text{ is regular iff channels} \\ \text{are bounded: there exists B,} \\ \text{for all } w \in L(A), \text{for all prefix } v \text{ of } w \text{:} \\ \text{Number of sends in } v \\ \leq B + \text{number of receives in } v \end{array}$



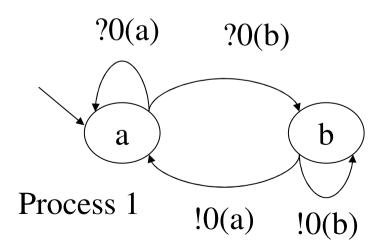
Undecidable to test if L(A) is regular (=bounded) Undecidable to test if L(A) is B-bounded (comm. Automata are Turing powerful: reduction to L(A)= \emptyset)

Regularity



Decidable to test if $L^{pref}(A)$ is B bounded (L^{pref} considers all states final and accepts even if some message not yet received)

-Construct $L^{pref}(A)$ up to bound B+1.

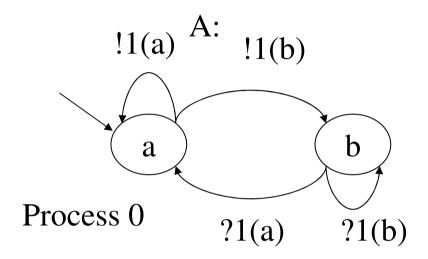


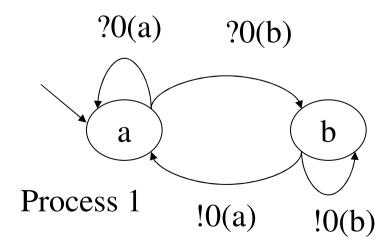
-Check whether bound B+1 is reached by an execution.

This execution is in L^{pref}(A) and is not B bounded.

Else $L(A) \subseteq L^{pref}(A)$ are B-bounded

Deterministic Communicating Automata





deterministic if when 2 transitions from same state labeld by !p(m) and !p(n), then m=n.

QUIZZ: deterministic?

Realizability

Realizability question: Given MSC-graph G, find Communicating automaton A with L(A)=L(G) (if possible).

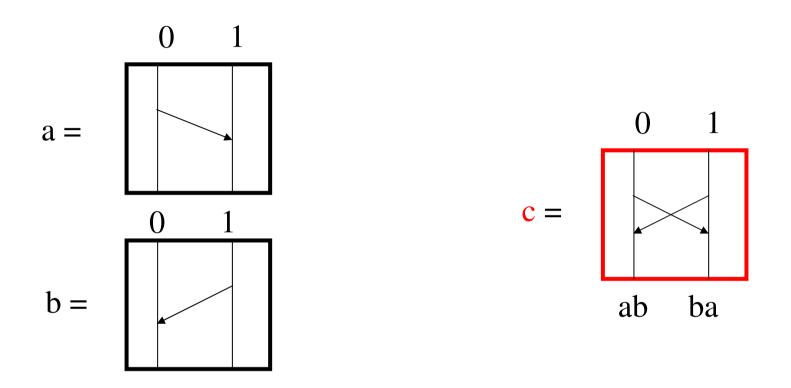
- a) No message content
- b) Deterministic additional information
- c) Non deterministic additional information

No message content

[Rajeev Alur, Kousha Etessami, Mihalis Yannakakis: ICALP 2001 & TCS 2003]

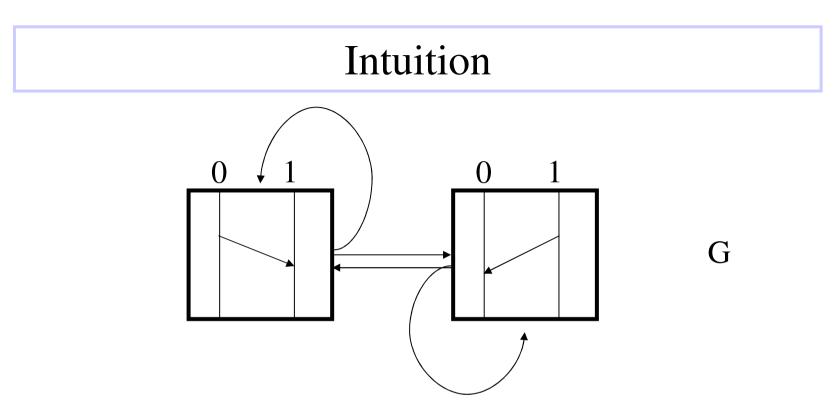
[Markus Lohrey : CONCUR 2002 & TCS 2003]

Example of a specification hard to distribute

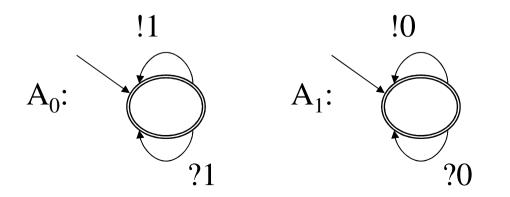


(ab or ba) not possible to implement with no information exchange between processes

c looks like something legitimate for each process.



Look at the projection A_0, A_1 of G on each process 0 and 1. Both A_0, A_1 are regular language => communicating automaton A.



Claim:

G is realizable iff L(A)=L(G), and then A is an implementation.

Proof

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Assume that \exists communicating automata with local final states B with L(B)=L(G)

By construction, $L(G) \subseteq L(A)$. Let us show that $L(A) \subseteq L(G)$ Let $w \in L(A)$.

> Then for all p, $\pi_p(w) \in L(A_p) = L(\pi_p(G))$: $\exists x \in L(G) = L(B)$ with $\pi_p(x) = \pi_p(w)$. It means that $\pi_p(x) = \pi_p(w)$ reaches a final state of B_p .

Hence w reaches a final state on every process of B_p : $w \in L(B) {=} L(G).$

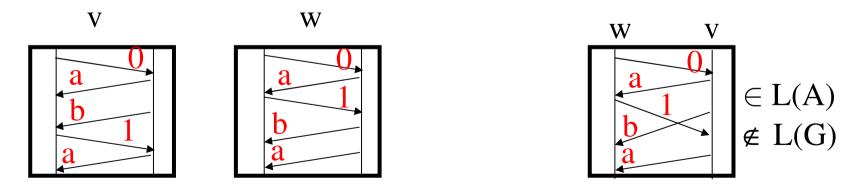
Undecidability

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Theorem: Checking whether L(G) is realizable is undecidable (even if G is regular and $L(A_G)=L(G)$)

Reduction to PCP: words (v_i, w_i) on $\{a, b\}^*$

Ex:
$$(v_0, w_0) = (ab, a)$$
 and $(v_1, w_1) = (a, ba)$



PCP has a solution iff not realizable

Some Decidability results

Claim: G is realizable iff L(A)=L(G), and then A is an implementation.

Theorem: Checking whether L(G) is realizable is co-NEXPTIME when G has no loop (finite set of MSCs).

Theorem: Checking whether $Pref(L(G)) = L^{pref}(A)$ is EXPSPACE-complete when G is globally-cooperative (includes regular MSC-graphs). In general, undecidable.

Intuition

Theorem: Checking whether $Pref(L(G)) = L^{pref}(A)$ is EXPSPACE-complete when G is globally-cooperative (includes regular MSC-graphs). In general, undecidable.

Intuition: $L^{pref}(A) = Pref(L(G))$?

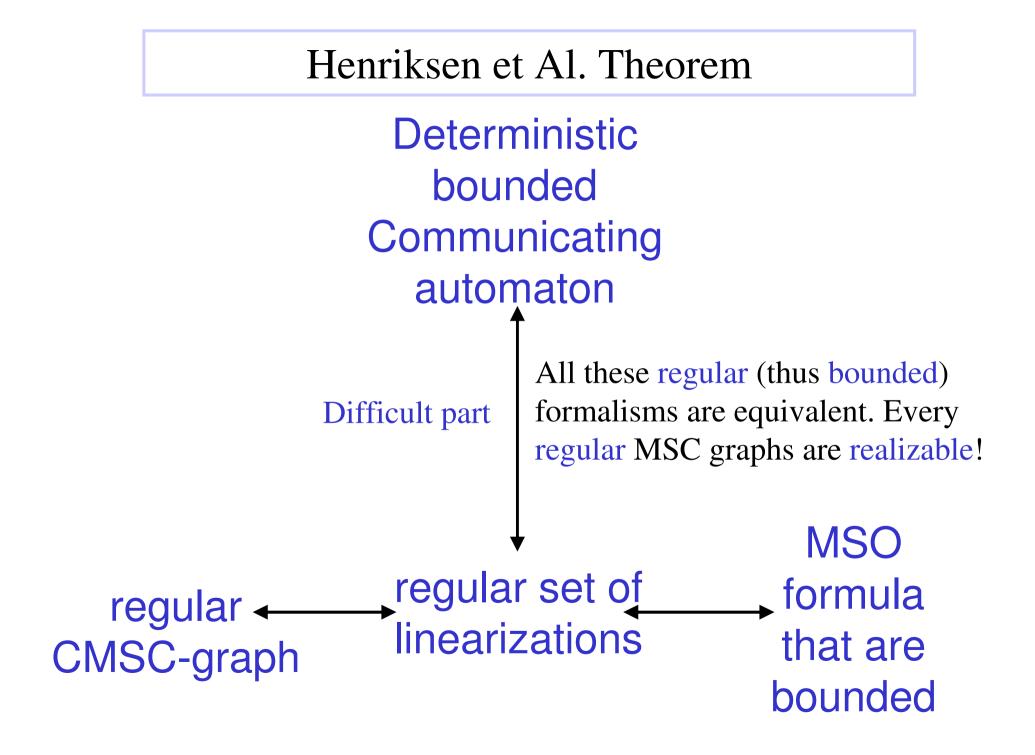
Regularity of G gives a bound on number of messages in transit for executions of G.

 $\Rightarrow Check whether all executions of L^{pref}(A)) are bounded.$ If not, $L^{pref}(A) \neq Prefix(L(G))$. If yes, test equality of two regular sets (L(G) exponential in |G|).

deterministic additional information

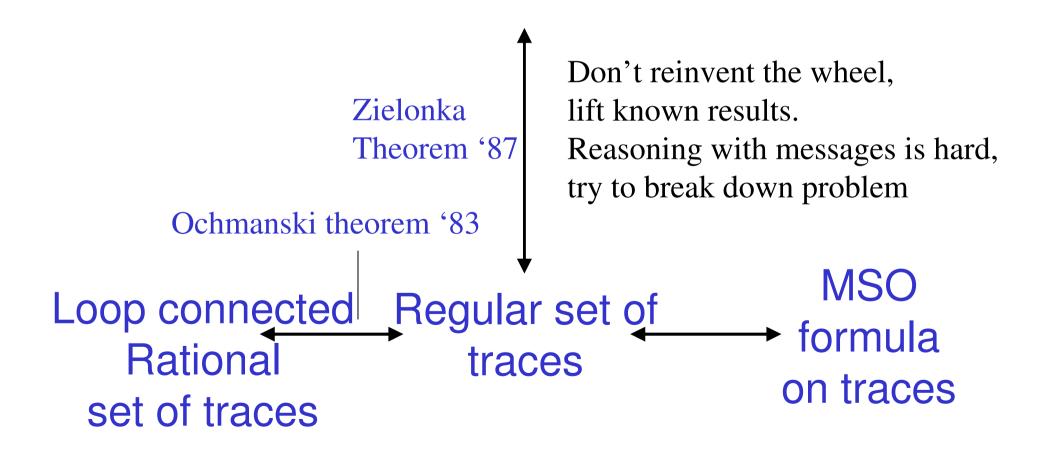
[Henriksen, Madhavan Mukund, Narayan Kumar, Mihind Sohoni, P.S.Thiagarajan : CONCUR-ICALP 2000; I&C 2005]

[Dietrich Kuske STACS 2002, I&C 2004]



Mazurkiewicz trace Theory

Asyncrhonous Automaton



Mazurkiewicz trace Theory

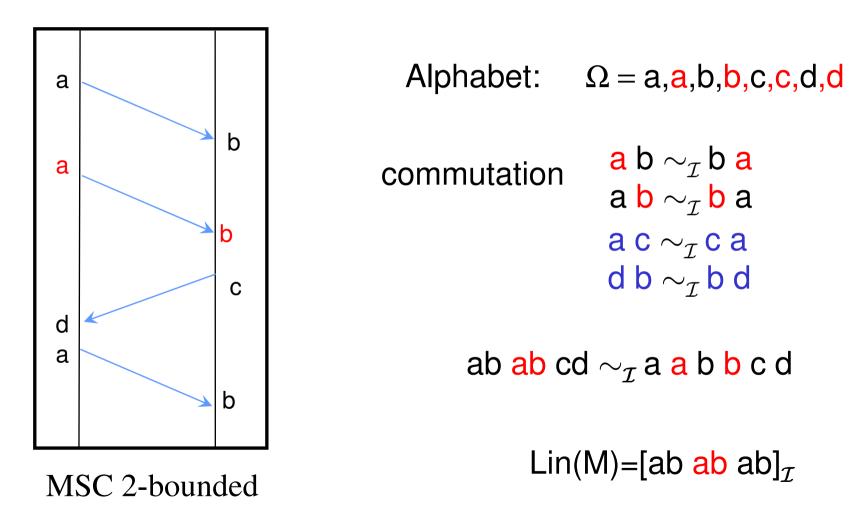
Given: Alphabet Σ and Symetric Independance relation $I \subseteq \Sigma \times \Sigma$

Define \sim smallest equivalence relation containing uaby \sim ubay when $(a,b) \in I$

Traces are equivalence class of \sim over words of \varSigma^*

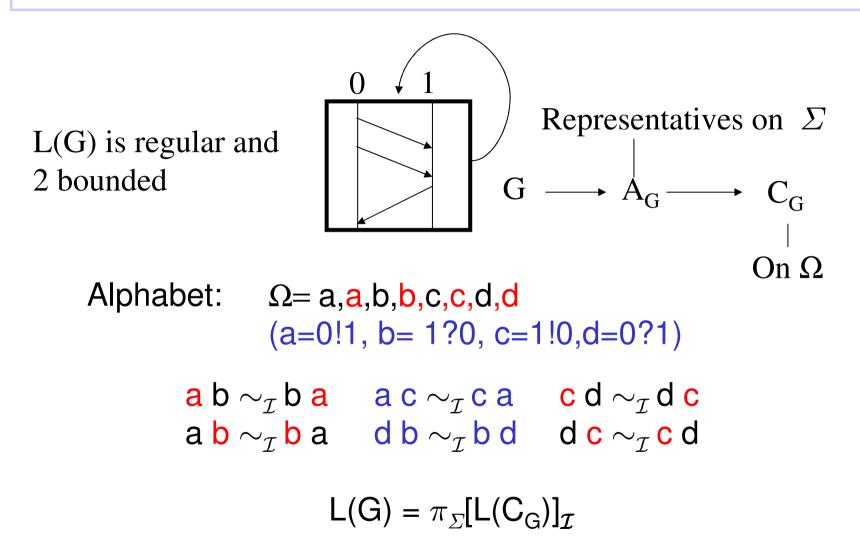
Ideas: words \Leftrightarrow linearizations/executions Traces \Leftrightarrow MSCs Encode commutations of MSCs into fixed Independence alphabet Σ ,I

Kuske's Alphabet



red a can be received only by a red b

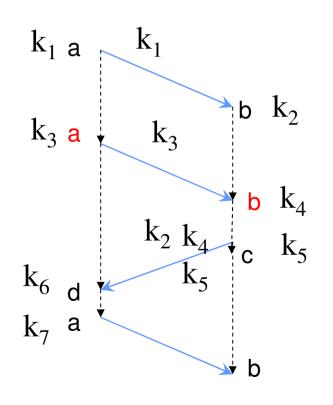
Kuske's Alphabet



 C_G is loop connected since loops of G are strongly connected. Ochmanski: L(G) is regular. Zielonka: \exists AA, L(AA)=L([C_G])

Asynchronous Automaton simulation

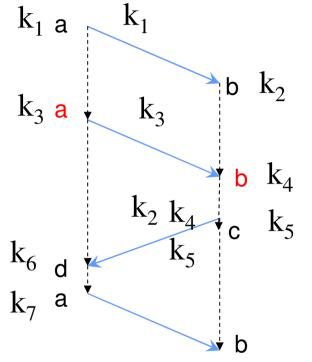
Simulation by a communicating automaton A of deterministic Asyncrhonous Cellular Automaton AA: each event is labeled by a state $k \in K$ (K finite set) new state depends only upon states of dependent letters



For each letter, local state remembers state of last event with that letter.

k₇ computed using k₂

Communicating automaton A



Final states of communicating automaton A = final states of asynchronous automaton AA

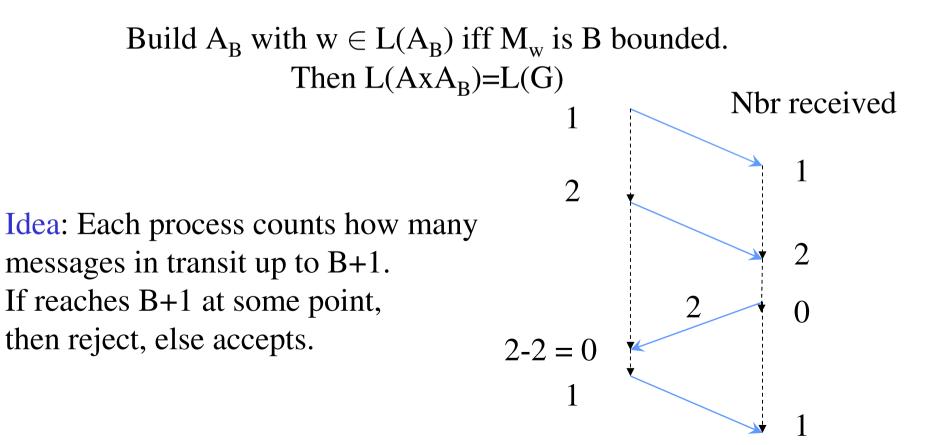
For each B bounded linearization w, $w \in L(A)$ iff $w \in L(AA)$.

Set of B bounded lin.

So $L(A) \cap \Sigma^*{}_B = L(AA) \cap \Sigma^{}_B = L(G) \cap \Sigma^{}_B = L(G)$

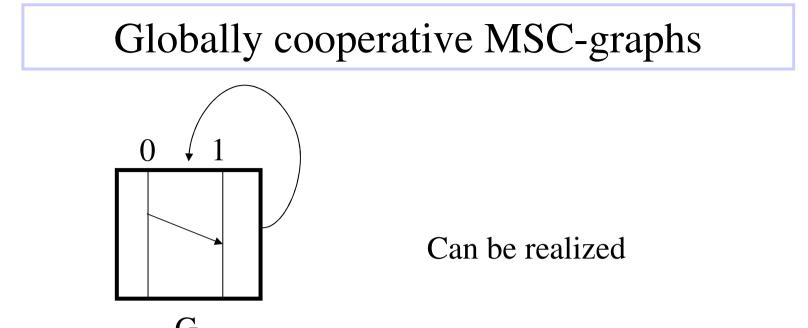
Communicating automaton A

So L(A)
$$\cap \Sigma^*{}_B = L(AA) \cap \Sigma_B^* = L(G) \cap \Sigma_B^* = L(G)$$

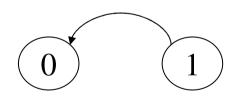


Non deterministic additional information

[Blaise Genest, Dietrich Kuske, Anca Muscholl I&C 2006]



G Communicating graph of a MSC: 1 node per process, 1arrow if message



weakly connected

Globally cooperative but not regular and still realizable.

Idea: Extends Henrinksen et al.

Globally cooperative MSC-graphs

There are globally cooperative MSC-graphs which cannot be realized with deterministic communicating automata.



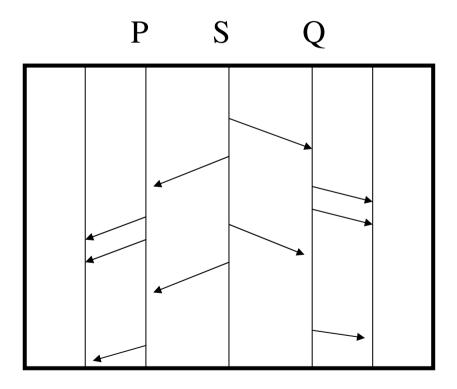
Spec: After the n-th receive of S, process P sends p(n) messages. process Q sends q(n) messages.

 $p(n)=q(n) \in \{1,2\}$

Easy to implement with non determinism (S chooses p(n)=q(n)).

Globally cooperative MSC-graphs

There are globally cooperative MSC-graphs which cannot be realized with deterministic communicating automata.



Assume A deterministic implementing G. A has n states on each process.

There exists two sequences $(a_i);(b_i), i \in \{1.. \ln(n^5)\}$ of p(n) after which states of all process are the same.

A has to accept mix of (a_i) on P and (b_i) on Q, contradiction

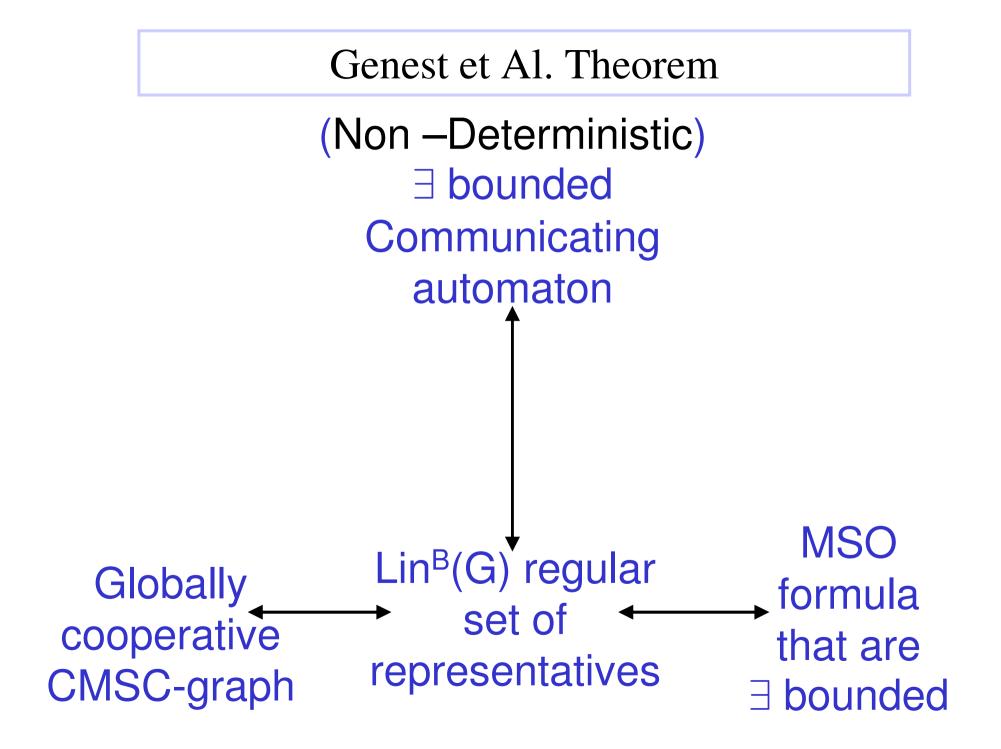
Globally cooperative MSC-graphs

Need candidates for class of Communicating automata equivalent with globally cooperative MSC-graphs.

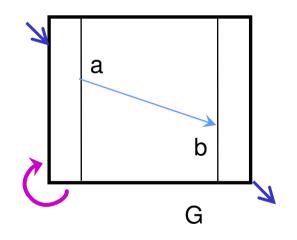
A is said \ll existentially bounded \gg if \exists regular set of representative.

All MSC-graphs are existentially bounded (Remember A_G). Globally cooperative have furthermore $Lin^B(A)$ regular set of representatives

An \exists bounded communicating automaton A has $Lin^{B}(A)$ regular set of representatives.

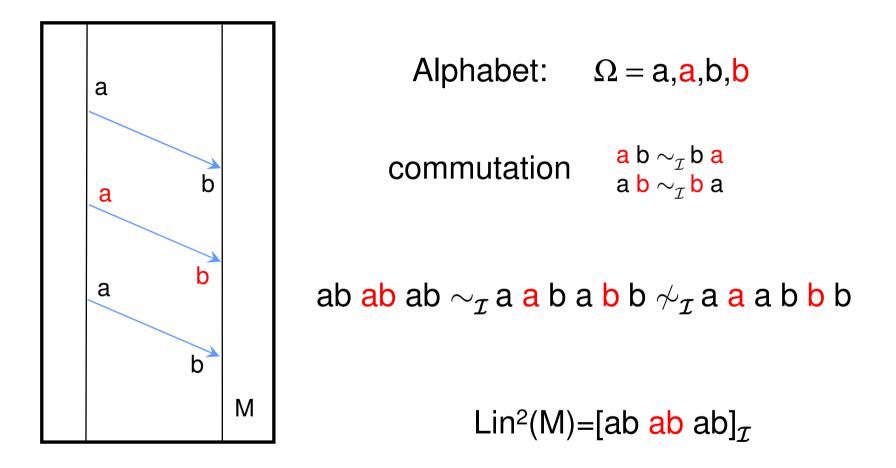


Reuse Same Kuske Encoding!



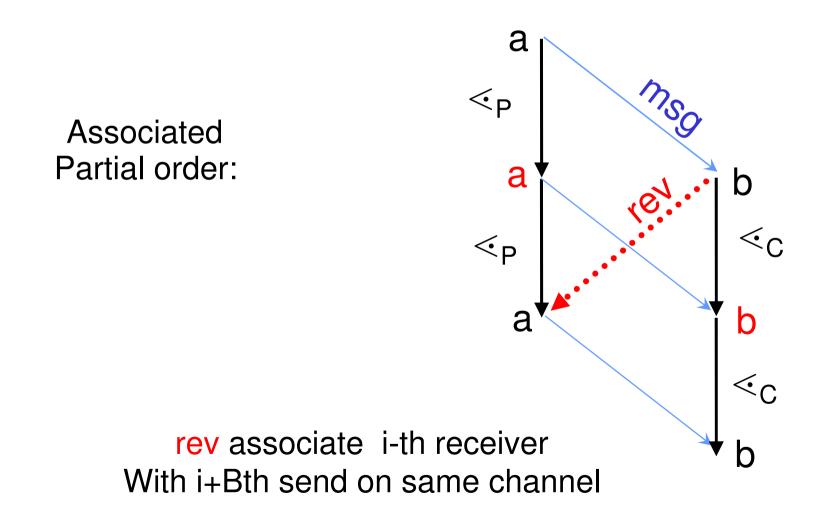
G is \exists -2 bounded.

Reuse same Kuske Encoding!



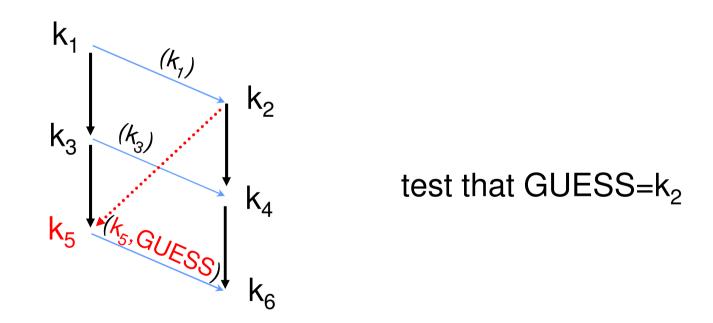
Trace alphabet gives us only B bounded linearizations, not all

Kuske Encoding



Simulation of the Cellular AA

Simulate with non deterministic Communicating automaton: Will guess value for rev, and check them later.



To compute k_5 , needs value of k_2 : no way to know it for sure: Guess it, and chek it later.

Communicating automaton A

$$L(A) \cap \Sigma^*{}_B = L(AA) \cap \Sigma_B^* = L(G) \cap \Sigma_B^* = L(G)$$

Build A_B with $w \in L(A_B)$ iff M_w has a B bounded linearization. Then $L(AxA_B)=L(G)$

Idea:New relation
$$e \lessdot_a f$$
 if $e <_p f$ and
f first event of type a

M is \exists –B-bounded iff (rev \cup msg $\cup \lessdot_a$) is acyclic

Prop: If cycle in (rev \cup msg $\cup \lessdot_a$), then a cycle of bounded size

look for cycle in this relation (need to guess for rev).

Conclusion and Future Work

Realizability: Many settings, many results. This talk: only a glimpse of all the results.

Still too expansive (time to check, size of the implementation) or too restricted (class to implement from).

Other results: Weaker results for very generic system (local EMSO) and Small non deterministic implementation for very restricted systems (local choice MSC-graphs, incomparable with regular MSC-graphs)

In term of techniques: lift result of simpler specifications (Traces).

Future work: handle distributed games (non controllable events, specification is only set from which to choose strategy), Main problem generate a distributed strategy.