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Model:
What the system should do

ctl

P2

INIT
(@ b
@ \ st | Slowqj
Sl L -
=0 il
c==10 - -
op? c=10 fadt? |
stop? stopl
& = P2 0K

Test case

generator — ™\

Test Suite

Test Objective:
What should be tested?

Well-Developed Tools:

Implementation
Under Test

MOVEP'10 on Automata Learning 5



C:/Documents and Setting WAP_MODEL.xml - UPPAAL ==
File Templates Y“ew Queries Options Help

| BlalE|a]aals

System Editor  Simulator IVerifier I
Drag out | WTPO ;I

Enabled Transitions
SOUTSLP 1 [Class_|]==
TSAP _Rodroke?

HCVTID NULL

(TermRoy2.

oveFromExternall, DAT, ua THSAP _p

TR _Invoke_inc
SDUTSAP _I[Class_|] 1=

e oo WTP
(=1 o= | N
resTIDreald: =fiuLL, y Usck .= SDUITSeP U 1% 1],
0, SOUTSAP J]TIDnew I] ==hULL
e .—NULL :
Egm ) LISTEM = SDUTSAP Ylass 1], RovTID »= LagTID,
pmmoumzpmwwm ol SDU[TSAP I][TIDHWPUQF&RBI BOCMEL s 1y OKE ResTID - LadTID <=y
o, RoTiD == LadTiD, LastTID = RevTID
el i TID_TEST _N@GETIDL astTID = W
© resTIDreg(] 3= RevTID TID_TEST 0K cpTRSAp_Up [[Clear I] ==
troel
__ SOU[TSAP_JTIDnew ] —MULL, =TSP |,
clean! =
S TRO | oumsae Qg:gnew\ MULL, R oD = LA TID, dat= TREAP_Lp_|
- SDUTSAP 1] Clesr =0 LaaTID -ReTID = W LastTiD -RewTID == W
= - LagtTID:=RevTID

Q| | | TSAP_Send
SDUTELP J]TIDnew |]==TRLE TR _Irraoke_jncl!
deativateR0l SDU[TSAP I][C\ear =1, - &
Mext Reset DUITSAP TP T ype, La=TID =0
TR _&hort_ind! SDU[TSAP TTDwe
Sirmulation Trace SDU[TSAPTITID_IT = RevTiD, SOUTSAP INTIDnewd==NLILL, artan)
ov3]=1, LagtTID == RewTID SOUTRSEP Down IITID_J==RenTID, | evl0l=1,
(zeroStored, W, -, LISTEN, LISTEN, M.~ | procCount =procCount-1 ﬁ%ﬂgRSAP Tl Clesr_1]==0 dass==2rn e procCourt =procC cunt-1
(TerminalSend.s) TIDOH AT sro = procCount =procC ednt+1
clet —TRSAD Up_ () mvoKE_RESP_waT
(zeroStored, WAIT, -, LISTEN, LISTEN, M
TR_Resutcrt  SDU[TSAP I|[TIDoE]
(TerminalSend. 12 SDUTSAP (][Class_(1=0 feiys = SDU[TSAP JITID_l == RevTID

TEAP_Rovick?
pvoDCount-pmchmﬂ
SDUTSAP ][Clear_|]==
TEAP _Sendl
SDUTSAR TR Type_lF=TP _ock,
SDLI[TSAP TTID_I}=ReTID,

FC ot = procCourt.
pricCount=practout- e op & cdmokeRID?
procC ount =procC ount+1

(zeroStored, WAIT, -, LISTEN, LISTEN, M
([ TerminalSend. 16 Terminsl 2MEP!, TSAP
(zeroStared, -, -, LISTEN, LISTEN, MULL,
(TSAP_2 .3 moveFromExternall, DATA_C
(zeroStared, -, -, LISTEN, LISTEN, MULL,
(TSAP_2E)

(zeroStored, newTID, -, LISTEM, LISTEM
(TSAP_28.TSAP_Rovimvokel, WIPOA.T
(zeroStared, -, -, RCY_INWOKE, LISTEN,

RESULT_\WalT

o toy_invoke_resend

frocC ount =proc ourt-1

pmoCoum : proccaurt:l e

froci ount=procC ourt+1

TR _Resut_req?

RCR:=0,
froc ount =procC ount+1

SDUTRSLP _Up_][Clear_|]==

SDUTRSAP _Up I][TID_|]=RevTID,
SDUTRESP Up_][Clear_|]:=1

el
srr=TREAP_Down_|,
dst:=WTRO_| Ak Sent==

SDU[TSAP J][Clear_I]==
TSAP_Send!

SDU[TSAP _IIWTP T ype_IF=SWTP_ack,

dean!
dat=TSap_|

TS&F _Zend!

(o2 SDUTSAPTID_]=-ReTID SDU[TSAP IIWTF Type_I1=ATR_Result SDUTSAP 1Clekr 11=-0 bockount et

(zeroStored, WAIT, -, RCY_INVOKE, LIS TSP _Rovack? SDUTSeP JTID_IF=RevTID, capy

WTPD8) procCount=procCouns 0 UL TRESP AT SIS qarrn SSorTELL

(zeroStored WAIT, -, TID_TEST_MCHK, L ‘—"@“-———____ = deadlvaieADl B LI
(WTROLG movel, DATA_COPY.1 move?) TermRcy2  TSAP_2  TerminalSend WTPOD WTP1 WSP_R Session_R A0 Y] RO R1  HTTP_Server Method0  Method1 DATA_COPY
(zeroStored, WAIT, -, - LISTEM, MULL, - L 1T 1T 1T 1T 1T 1T i 1T il 1T 1T 1T 1T 1L 1 ﬂ

(ATPO.7 TSAP_Sencl, TSAP_2.1 TSAP_ Hj H] Hj H] Hj H] Hj . ‘ . | — ~ | — ~ | . H] H] Hj H]
czeroStored, -. - TOOK_WAIT, LISTEN = = = = = = = llnactwe][ mactl\re][ |nact|\re][ |nact|\re] = = = =
(TS&P_2.2moveToExternal, DATA_COF
(zeroStored, -, -, TIDOK_WAIT, LISTEM, []

(TS&P_2.5MEPZTerminall, TermRowz.1.

| : | !' t =

Trace File Clean
Prese IHext Replay
tored [E

clean

/ MOVER 10 on AlutomatalL earning

I I I I I
WAIT
Slovwy Fast
elaan LI

i start H S * 4 MSN Messenger | § max‘leitgeb@tac...l ) Inbox - Microsaf.,, | = outlook Send,l’Re...l B 2 windows Co... v| L3 Windows Exp... v| 2 java v| X bash | &1 SimplyCapture - ... | 5 lw 3@@ @@ @_-) :% « 3D L9 1016

Cpeh Save Randotm




Modeling Gap

Typically, models are not available

Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing
[A. Hartman]

- What to do if there is no model?

(the norm in practice)

MOVEP'10 on Automata Learning
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How to support generation of models?

Model Behavior of existing implementation
- By observations gained during extensive testing

Potential Applications:

- Regression testing

- Migrating from manual to model-based testing
- Modeling environment of SUT, libraries

Problem: Constructing State Machines from
traces/executions/words
- Has been studied in Automata Learning

MOVEP'10 on Automata Learning



Simplest form of Automata Learning

* From sample of words
+ find simple(st) state machine that explains them

MOVEP'10 on Automata Learning
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Requirements Capture

+ Generate State Machine Specification from set of
allowed (and disallowed) scenarios:

put(1) put(1) / coffee Instances:
pUT(l) / tee i PIGY englne [Harel Marelly]
pUT(Z) /COffee . Smyle [Bollig,Katoen,Kern Leucker]
put(1) put (1) wait(10) / money_back

put(2)

wait10~()
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CO mpOS |T|O HC(I Ver' if |CGT|O n[GiannakopouIou,Pasareanu et al]

Complex Model Checking Problem:

E || M ®

If Building A using Learning
Checking E || M |= ¢ too complex: ASSUME:
Find abstraction A of E, s.t.: wllM |z o

can be checked for single behavior w
AlIM I= o Check w [[M |= ¢ formanyw,
_______________ Construct A from these checks
EIIM |= o Check whether A satisfies premises

E refines A

MOVEP'10 on Automata Learning 12



S P@C if i CGT i O n M i n i ng[Ammons,Bodik,Larus]

API:

bind

listen

accept M

close

Problem: Find restrictions on how APT
calls may be ordered

Assume we have well-tested programs
that use the API

Analyze executions of such programs.

Form an Automaton that summarize
these executions.

bind

listen

\

accept

close
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Learning

Instance Space (usually infinite)

16 ,
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/

From Concept Class

Sample
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Some Terminology

Given an Instance space X
Concept is a subset of X
Concept Class is a class of Concepts

Sample is a (finite) set of labeled examples
- x+ where xeC
- x- where xe¢C

Learner produces Hypothesis (in Concept Class) from Sample
Teacher knows Concept, produces Sample

- Can also, e.g., answer queries

Hypothesis H is correct if H=C

Hypothesis H is consistent with sample if

- if x+ insample then xcH
- if x- in sample then x¢H

Concepts have Representations
- size of Concept C = size of its Representation

MOVEP'10 on Automata Learning 15



Automata learning

Assume finite set = of symbols
Instance space: 2*
Concept Class: Regular languages

Representation of Concept: DFA

Sample is a (finite) set of labeled words
- w+ where wel
- w- where wel

MOVEP'10 on Automata Learning
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Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

> alphabet of symbols input
Q states

0:Qx ~ - Q transition function

Fc Q accepting states

Assumptions:

‘Deterministic

‘Completely specified

Accepting state

MOVEP'10 on Automata Learning 17



Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

> symbols
Myhill-Nerode:
Q states Given language L
QX Z transition function
« = Q fransition functio For prefix u, define L, ={v|uve L}
Fc Q accepting states
Nerode congruence: u~u' iff L, =L,
Assumptions: Unique Minimal DFA accepts regular L
-Deterministic Q : equivalence classes [u]l.
*Completely specified  ([uly,a) = [ual, fransition function
F:{[ul. | ue L} accepting states

MOVEP'10 on Automata Learning 18



Automata Learning: Frameworks

Construct DFA from sample of accepted and rejected words.
Passive learning: sample given

* Only accepted words Teacher
(positive sample)

* Accepted and rejected words e w2e w3 whs

Observing SUT/test suites [ Learner ] womworwT

Active learning: Learner chooses words, teacher classifies
T@STing SUT Membership query:
Teacher ]

is w accepted or rejected?
w is accepted/rejected

[ Learner ]

MOVEP'10 on Automata Learning 19




Mealy Machines

Finite State Machines w. input & output
I input symbols input

O output symbols @ outpbut
Q states a/1

0:Qx I - Q transition function
L Qx I — O output function

*Often used for protocol modeling, for
protocol testing techniques,

b/1

Assumptions:
‘Deterministic

‘Completely specified

MOVEP'10 on Automata Learning 20



Passive Learning:

Construct DFA from sample of accepted and rejected words.

Which DFA?

The most succinct onel Teacher
- which conforms to sample,
- and has fewest states -

1+ w2+ w3+ wé+
Learner wh- wb- w7-

Finding smallest DFA is NP-hard [Gold 78]
Can be found by constraint solving (Biermann's algorithm)

MOVEP'10 on Automata Learning

21



Biermann's Algorithm

Is there a conformant DFA with n states?
Encode this as a CSP problem

Map each prefix u in tree to G/ \@
some state g, € {1 .. n}
a b

Subject to constraints:
- q,#q, if uaccepted, v rejected

- if ua va are prefixes, then
qu = Gy implies gy, = gy g Y &)

Try example forn = 3 g

MOVEP'10 on Automata Learning
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Biermann's Algorithm

Is there a conformant DFA with n states?
Encode this as a CSP problem

Map each prefix u in tree to (/ \@
some state g, € {1 .. n}
a b

Subject to constraints:
- q,#q, if uaccepted, v rejected

- if ua va are prefixes, then
qu = Gy implies gy, = gy g Y &1@

Try example forn = 3 g
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Biermann's Algorithm

Is there a conformant DFA with n states?

Encode this as a CSP problem
Map each prefix u in tree to
some state g, € {1 .. n}

Subject to constraints:
- q,#q, if uaccepted, v rejected
- if ua va are prefixes, then

q, = q, implies q,, = q,,

Try example forn = 3

Check

Acceptedia b aaa aabb bba
Rejected: A aa aab

MOVEP'10 on Automata Learning
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Discussion

* Problem w. Biermanns algorithm: Exponential

* Q: Is there a setting to learn automata
polynomially in some way?

By Gold's result, we cannot hope to learn minimal
DFA from arbitrary sample.

MOVEP'10 on Automata Learning
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TIdentification in the Limit

b [ Teacher ]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A-
|

Enumeration of X* 45 ab

QZ
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TIdentification in the Limit

b [ Teacher ]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A-
\ )

b—
IS
)
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] TIdentification in the Limit

b [ Teacher ]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A- [ Learner ]

» Assume Teacher incrementally enumerates
all words (classified) in Z*

« After each word, Learner can use previous
words to form hypothesis H

Learner identifies L in the limit,
if H converges to correct hypothesis after
finitely many words
Still, (exponentially) much data may be needed

MOVEP'10 on Automata Learning 28



Efficient Identification in the Limit

[ Teacher ]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A- { Learner ]

Concept Class is efficiently identifiable in the limit if
Jpolynomials p,q, s.t. for any concept C in concept class
 Learner can produce H in time O(p(|seen sample|))

« Exists sample S of size O(q(|C|)) s.t. Learner
produces correct H whenever seen sample contains S

S called "characteristic sample” for C
* S can depend on Learner

MOVEP'10 on Automata Learning 29



Observations

if Concept class is efficiently identifiable in the limit,
then

« Learner needs polynomial time to produce
hypothesis

« Concepts characterized by polynomial-size
characteristic sets

With “helpful” Teacher, the Learner needs only
polynomially much data to infer C

« With "unhelpful” Teacher, the Learner may need a
lot of data to infer C

e Learner should work well for characteristic sets,

should make "reasonable” hypotheses otherwise.
MOVEP'10 on Automata Learning 30



Characteristic Samples

A characteristic sample S for C should uniquely
characterize C in the following sense:

Learner should produce hypothesis C from any sample
that contains S and is consistent with C

Implies that if

» S s characteristic sample for C and
« S'is characteristic sample for C
then either

e Cisinconsistent with S' or

e C(C isinconsistent with S

¢ (otherwise what to do with S U S’ ?)

MOVEP'10 on Automata Learning 31



Characteristic Samples for DFAs

A characteristic sample for L should identify its DFA.
This can be done by
« Demonstrating that there are n states
« Each state represented by access string u
u represents 6(qg,u)
* For each state g and symbol g,
uniquely identify &(q,a)

MOVEP'10 on Automata Learning 32



Separating Sequences

A separating sequence for g and g is a suffix v
such that

d(q,v) is accepting and 6(q',v) is rejecting

(or vice versa)

1 2 : A
1 3 : b (nhota)
2 3 A

MOVEP'10 on Automata Learning



Separating Sequences

A separating sequence for g and q' is a suffix v
such that
d(q,v) is accepting and 6(q',v) is rejecting
(or vice versa)
A separating family of DFA is a family of sets
{Z, | qis astate of DFA}
s.t. Z,nZ, contains separating sequence for q and ¢

1 b

N
> > >

b

MOVEP'10 on Automata Learning



Separating Sequences

A separating family of DFA is a family of sets
{Z, | q is a state of DFA}
s.t. Z,nZ, contains separating sequence for q and q

If all Z, are equal (to W), then W is a characterizing
set

N
> > >
o on

MOVEP'10 on Automata Learning



Separating Sequences

A separating family of DFA is a family of sets
{Z, | q is a state of DFA}
s.t. Z,nZ, contains separating sequence for q and q

If all Z, are equal (to W), then W is a characterizing
set

MOVEP'10 on Automata Learning



Characteristic Sample

_et Sp(L) be prefixes in minimal spanning tree of DFA(L)
et K(L)be{ua | ue Sp(L) ae 2}

_et Characteristic Sample be

Sp(L) u {uv | ue Sp(L)UK(lL) veZ,}

y /45\ ‘

aaa
/ aab

abb

aabb

MOVEP'10 on Autom%@Learnl ng 37




Why characteristic sample?

When forming DFA from prefix tree:
« The states {q, | ue Sp(L)} cannot be merged
« since they are separated by suffixes

« Eachstatein{q, | ue K(L)} can be merged with at
most one state in{q, | ue Sp(L)}

 Easy to construct minimal DFA from sample
« if Sp(L) is known
y a a
@) /N Eb
@ aaa
2N, b o
@ @ aabb

b
MOVEP'10 on Autom%@L earning 38



State Merging Algorithms

Traverse the prefix tree from root
For each new state
* if possible, merge it with some seen state

« Otherwise, promote it to a new state in the
resulting DFA
Red states are determined to become DFA states

Blue states (frontier) are the successors of red states,
waiting to be candidates for merging with red states.

Repeatedly
Merge blue with red if no inconsistency results
"Unmergeable” blue state becomes red

MOVEP'10 on Automata Learning 39



State Merging: Example

/K
/6\ %
!

MOVEP'10 on Automata Learning
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State Merging: Example
o
&N
®/Nii\z)
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State Merging: Example

S
®/NE

MOVEP'10 on Automata Learning
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State Merging: Example
S

/D\E
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State Merging: Example

MOVEP'10 on Automata Learning



What if we change order?

/K
/6\ %
!

MOVEP'10 on Automata Learning
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About State Merging

Order in which blue states are considered matters.
If considered states stay within{q, | ue K(L)}

a minimal DFA will be constructed
Otherwise, "suboptimal” merges may result

Remedy: Teacher and Learner agree on a fixed technique
to construct Sp(L)

* e.g., to consider strings in lexicographic order
e RPNI algor'i‘rhm. [Oncina, Garcia]

Otherwise: use heuristics for choosing "best merge”,
* e.g., to select states with "largest” subtrees.

MOVEP'10 on Automata Learning
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About State Merging

Time Complexity (in size of sample):

e At most a quadratic number of candidate merges
considered.

« Each merge takes linear time to check
« I.e., time complexity is polynomial.

MOVEP'10 on Automata Learning
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Active Learning
Learner actively constructs the characteristic sample,

Membership query:
is w accepted or rejected?

Teacher

is accepted/rejected
Learner

Yes/counterexample v

Oracle

Equivalence query:
is H equivalent o A ?

MOVEP'10 on Automata Learning
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TIdeas

Maintain candidates for
Sp(L) K(L) "%
where W is a distinguishing set
Ask membership queries for
{uv | ue Sp(L)UK(L) ve W}

If u in K(L) is separated from all prefixes in Sp(L) by
separating suffix, move u to Sp(L) and extend K(L)

For new u" in K(L) let W be large enough to separate u’
from all but (at most) one prefix in Sp(L)

MOVEP'10 on Automata Learning
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L* Algorithm b Q
Observation table 45\ \J
s o

W

A

N s
Sp(L) 4

.

KL e 1®
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L* Algorithm b Q
Observation table 45\ \J
s o

W

Sp(l) 4 |a -

K(L) =

MOVEP'10 on Automata Learning 51



CJS ;
L* Algorithm b Q
Observation table \GJ
W
© /e\bb

| A - O I
Sp(l) 4 |a -

KL) - aa
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Closed - Form Hypo’rhesus Q

Observation table
wW

Sp(l) 4 |a -

b |+ Gg
kL) o [aa - '
0 @
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Ask Equivalence Query Q

Observation table
wW

Sp(l) 4 |a -

b + Gg
a,b
aa -
Kb 7 ab - ad b = @
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Decompose coun’rerexample Q

C(

Observation table
wW

SP(L) — a +

b +
J |aa - ,—L\ Gg o0
K(L) ab - ClClb a,b

MOVEP'10 on Automata Learning 55




Add new suffix to W Q

Observation table
wW

A b

Sp(l) 4 |a + |-

b +
J |aa - |- A
k(L) ab aa b

v
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Not closed- Add new prefix to S (Lﬂ

<)

Observation table

W b a i
o
- T,
Sp(l) 4 |a + |-
| aa
b +
_ A
S P aab-
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Add new extensions to K(L) Q

Observation table

W
o
- T,
Sp(l) 4 |a + |- /
| aa - |- b
b |+ |-
) |ab - |+ A
A s aab
_|aab - |+ \;'_’
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A bOUT L* [Angluin]

DFA with n states can be learned using

 <n equivalence queries

* O(|Z|n? + nlogm) membership queries
* mis size of longest counterexample

Produced hypothesis is always minimal DFA which is
consistent with seen membership queries

* These are a characteristic set for hypothesis

Equivalence query idealizes (possibly) exponential search
for deviations from model

The setup with Membership and Equivalence queries makes
it possible to formulate polymial-complexity algorithm.
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Mealy Machines

‘Finite State Machines w. input & output
I input symbols input

O output symbols @ outpbut
Q states a/1

0:Qx I - Q transition function
L Qx I — O output function

*Often used for protocol modeling, for
protocol testing techniques,

b/1

Assumptions:
‘Deterministic

‘Completely specified
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Conformance Testing

Given MM A, construct a sample (i.e., a test suite) S such
that A is "best fit" to explain S

e Typically: A is the only MM with <|A| states, which is
consistent with S

MOVEP'10 on Automata Learning
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W-method

Let Sp(L) be prefixes in minimal spanning tree of MM
Let K(L)be{ua | ue Sp(L) ae I}

(a,
/1 / b/1
b/1
a/0 a/l/ \;/o a/0 / \b‘/O
b/0 b/0

)
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W-method

_et Sp(L) be prefixes in minimal spanning tree of MM
et K(L)be{ua | ue Sp(L) ae I}
et Sample be {uv | ue Sp(L)UK(L) ve W}

where W is a distinguishing set
a/1 a/

\ :> ;/“/@i\f 17 “”;7\.
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Z-method

_et Sp(L) be prefixes in minimal spanning tree of MM
et K(L)be{ua | ue Sp(L) ae I}

_et Samp Iebe {uv | ue Sp(LYVK(L) veZ,}
here {Z,| q<e Sp(L)}is a separating famlly of MM

-
\ SELYS:

MOVEP'10 on Automata Learning




Learning vs. Conformance Testing

Learning: Find Concept A which is "best fit" to explain a
given sample S

Conformance Testing: Given Concept A, construct a sample
S such that A is "best fit" to explain S

For automata learning: A characteristic sample for A is
also a conformance test suite for A

MOVEP'10 on Automata Learning 65



L* vs. W-method

* A sample generated by L* is also a conformance test suite
generated by the W-method

« A conformance test suite generated by the W-method is a
characteristic sample

« A is the only MM of size < |A| which is consistent with S

Q: Can we check whether A is the only automaton of size
< |A| + k which is consistent with S

MOVEP'10 on Automata Learning
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Vasilevski-Chow test suite

Let k =2
Test suite should allow non-minimised MM

MOVEP'10 on Automata Learning
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Vasilevski-Chow test suite

Let k =2
Test suite should allow non-minimised MM
Must cope with anomaly

MOVEP'10 on Automata Learning
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Resulting test suite

Let W be a characterizing set for A
VC-test suite has form
S = {uxv | ue Sp(L)UK(L) xeIk ve W}

A is only MM of size < |A| + k which is consistent with S

21| &= |

MOVEP'10 on Automata Learning
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AdeTive MOdel CheCking [Peled Yannakakis 02]

* C :
sUT _—— | M
H oK P

\/

Conformance Testing

MOVEP'10 on Automata Learning
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AdeTive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
H ®

Counterexample w

Check behavior on w

MOVEP'10 on Automata Learning
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Adap‘l‘ive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
H ®

Counterexample w

Check behavior on w

rue counter
example / ERROR
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Adap‘l‘ive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
A 0)

Counterexample w

Check behaviorlon w

False counter example
/ New counterexample
for L*

MOVEP'10 on Automata Learning
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LearnLib: a Tool for Inferring Models

Developed at Dortmund Univ. [steffen, Raffelt, Howar,
Merten]

» Central Idea: use domain-specific knowledge to
reduce the number of queries:

- Prefix-closure

- Independence between symbols (e.g., in parallel
components)

- Symmetries

* These properties correspond to "filters” between
observation table and SUT
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the LearnLib

algorithms approximative
equivalence queries

filters

U On Automata Learning



Whata about Extensions of Automata?

Input and output symbols parameterized by data values.
State variables remember parameters in received input

Types of parameters could be, .e..g
- Identifiers of connections, sessions, users
- Sequence numbers
- Time values
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Timed Automata

Based on standard automata
Clocks give upper and lower

bounds on distance in time 0

between occurrences of

symbols.

Temporal properties of Timed put ; get ;
Automata (reachability, LTL, ..) x<2/ %310 /
can be model-checked x:=0 x = 0

Implemented in tools
(UPPAAL, IF/Kronos)

Timed words:

(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..
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Event-Recording Automata

Timed Automata can not be
determinized in general

Event-Recording Automata (ERA): 0
One clock for each symbol, which
is reset on that symbol.

ERA can be determinized put ; get ;
Assump’rion: >2<geT : Xput 2 10

Inference algorithm can precisely
control and record timing of
symbols.

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..

Clocked words:

(get, [14.4,14.4]) ﬁ\ﬁg\'lE%’('):L'(l)“é‘r‘\]&lsg()er;r}él[éﬁ'egaﬁﬁ}r?g’gl}]) (get, [0.96,13.9]) .. -5



Event-Recording Automata

2 (symbols) {put, get}
L (locations) {lg I;}

lo (initial location) 0
E (edges) ¢ L x X xGuards xL

F (accepting locations) < L

put. get ;
>2<9€1' 5. Xpu* .>. 10
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Event-Recording Automata

> (symbols) {put, get}

, Conjunctions of
L (locations) {lg I;}

interval constraints

lo (initial location) Z 0

E (edges) ¢ L x X xGuards xL

F (accepting locations) < L

Semantics f’(”* < get

Q (states) L x ROx RO 59 Xpur 2 10
qo (initial state) (l,, [0,0])

I > x R0 x R0

5: QAxI—>Q

5(<ly [0,0] < get, [14.4,14.4]) = <|; [0, 14.4]>
5(<l, [0,14.4)> < put, [2.0,14.4]) = <|, [2.0 O]
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Non-Unique Representation

Deterministic ERAs do not have unique representations

Q a; X,=1 )@b;xazl
b.Xx,22

MOVEP'10 on Automata Learning
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Find equivalence relation # on symbols and states, s.t.

- ¥ respects accepting/non-accepting states
- q®q a=xa implies  §(q,a)~d(q.a)
Learn the Quotient DFA
/=  Q/x & ( ¥ql.lal.) = [8(q.a)]. ) F/=

For DERASs

Equivalence on states based on region equivalence
Assume largest constant K_ in constraints on x_
<, [%g, X P & <, [y, Yo ] iff

- X, > K,and y,> K, or

integer parts of x, and y, same and X, is integer iff y, is integer
- same for x, and y,
- If X, ¢« K, and x, < K, then X, ¢ x, iff y, < vy

<a,[x, x, P& <a,ly, vy, iff forall k < K,
- X, ¢ k iff y, <k and x, > k iff y, > k

MOVEP'10 on Automata Learning
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Regions: From infinite to finite

Concrete State SymbOhC state (region)
(I,[2.2, 1.5]) (l. y )
Xy ¢ Xy 4
2 ST 2 -
)
1 1
> Xa - . Xq
1 2 3 / T 2 3
83 MOVEP'10 on Audmagquevatence class (i.e. a region)

~There are only many such!!



Abstraction of symbols

Concrete Symbol Abstract symbol
(a,[2.2, 15]) (a, )
Xpa X4
2 ST 2 —
)
: 1
> Xa X,
1 2 3 1 5 3
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We need only initial regions

Concrete State Symbolic state (region)
(. ) (. — )
Xp 4 Xy, 4
2 S 2 —
1 . |
.
> xCl

0 ;xa
1 2 3 / : 5 3

85 MOVEP'10 on Audmagqueivaitgnce class (i.e. a region)
~There are only many such!!



Regions preserved by ftransitions

Concrete State SymbOIIC state (r‘egion)
(I,[0.7, 01) (. —_— )

| -
1 = | ,///.

1 2 3 1 2 3

86 MOVEP'10 on Audmagquevatence class (i.e. a region)
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Simple DERAs

- DERA with “small guards”

get .
0 <Xyl 0<xgl

put. get .
’2<96‘r . Xyt 2 10
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Modifying Setup
The following setup does not work

Membership query:
is w accepted or rejected?

Teacher

is accepted/rejected
Learner

Yes/counterexample v

Oracle

Equivalence query:
is H equivalent o A ?

MOVEP'10 on Automata Learning
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Adding Assistant

Learner actively constructs the characteristic sample,

Membership query:
For timed word

Membership query Teacher
for abstract words
h - . ,
is accepted/rejected
Learner Assistant
Yes/counterexample v

\

_ y
Equivalence query

for quotient automata Oracle

Equivalenc
For timed autom
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Query Complexity

Size of Region graph is roughly
O(ILI KI=l)
Number of Membership Queries is about cubic in this number

MOVEP'10 on Automata Learning
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Single-Clock Automata pverwer et al. 09]

Consider Deterministic Timed Automata with one clock
- Still, no unique minimal representation

+ But, there is a variant of Nerode Congruence
- if we know where resets occur

Timed word:
G (get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..

Clocked word:
(get, 14.4) (put, 2.0) (get, 12.96)

pLIT . 961’ .
X <2 ’ (get, 14.4) reset (put, 2.0) reset (get, 12.96) reset
- X210/ Is equivalent to
x:=0 =0 (get, 12.4) reset
but not to
(get, 12.4)
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Sihg'Z-CIOCk Automata pverwer et al. 09]

The timed language can be formed from a finite number of
Congruence classes

Only, it must be determined when to reset?
Define canonical form by prioritizing conflicts

put . get .
X< 2 X210/
x:=0 x:=0
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put ;

R€f|n|n9 GUGI"dS [Verwer et al. 09]

Guards can be refined by counterexamples

Guards refined from counterexamples
get @0 put @2 accepted
get @3 put @7 rejected

Determine the reason for difference by
G investigating other traces

(binary) search procedure
Finds “explaining pair”, e.g.,
get ; - get @2.2 put @4.2 accepted
- get @2.2 put @4.7 rejected

Suggests reset at get
and guard x< 2 on put transition
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Sihg'Z-CIOCk Automata pverwer et al. 09]

Have “reasonable” canonical forms

Exist characteristic samples which are polynomial in size of
canonical form (does not depend on largest constant)
Learning can be polynomial in (Membership, Equivalence)-

query model
G Version for' mUITlple C'OCkS [Grinchtein, Jonsson]
Higher complexity
PUT25 get .
X< X210/
x:=0 x:=0
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Applications to Realistic
Procotols

MOVEP'10 onAutomata Learning
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S IP P I"OTO CO I [Aarts,Jonsson, Uijen]

From RFC 3261:

» SIP is an application-layer control protocol that can

- establish, modify, and terminate multimedia sessions (conferences) such
as Internet telephony calls.

- invite participants to already existing sessions, such as multicast
conferences.
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Structure of SIP packets

Method(From;To; Contact; CallId; CSeq; Via), where
Method: type of request, either INVITE, PRACK, or ACK.
From and To: addresses of the originator and receiver
CallId: unique session identier.
Cseq: sequence humber that orders transactions in a session.
IGNORE THE BELOW
Contact: address where the Client wants to receive input
Via: transport path for the transaction.
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part of SIP Server

Variables: From, Curld, CurSegq
Constants: Me
INVITE(from,to,cid,cseq) [to == Me}/

From = from . Curld = cid; CurSegq = cseq,
100(From,to,CurId,CurSeq)

PRACK(from, to, cid, cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseq == CurSeg+1] / 200

om,to,Curld CurSeg+l)

ACK(from,to,cid,cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseqg == CurSeq] / €

MOVEP'10 on Automata Learning
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Finding an Abstraction

Abstraction of Concrete Message FPRACK(558,1)
depends on internal state of SUT
previous history

Assistant must maintain relevant parts of history:

e.g., local copies of  Curid, CurSeg

MOVEP'10 on Automata Learning
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Adapting to Automata Learning

Learner

Assistant

V o

N

1

v

MOVEP'10 on Automata Learning
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Adapting to Automata Learning

INVITE(SSS, 1) STP

Learner Assistant S
(SUT)

\ 4

N

"~ 100(558,2)
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Adapting to Automata Learning

Learner

INVITE(first, first)

&
~

.

100(first, next)

Assistant

INVITE(558, 1)

N

"~ 100(558,2)

MOVEP'10 on Automata Learning
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Adapting to Automata Learning

Learner INVITE(first, first) Assistant INVITE(SS8, 1) . SIP
g (SUT)
auxiliary
variables:
< Curld = ..
100(first, next) CurSeq = ... | 100(558, 2)
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Abstraction: Formal definition

Possibly Infinite State Mealy Machine

I input symbols .

O output symbols nput

Q states @ output
do initial state a/1 /FJ

5 Qx I —>Q transition function /0 b/1

L Qx I — O output function
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Abstraction: Formal definition

Possibly Infinite State Mealy Machine

I input symbols
O output symbols
Q states

do initial state

0:Qx I - Q transition function
L Qx I — O output function

Abstraction

IA abstract input symbols
OA abstract output symbols
R states

o initial state

oR: R x (IuO) » R update
or» Rx I — I input abstraction

0o Rx O - O* output abstraction
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Abstraction: Formal definition

Possibly Infinite State Mealy Machine ~ Abstraction

I,0 symbols IA  OA abstract symbols
Q.9 states , initial state R,rg states , initial state
0:Qx I > Q transition function oR: R x (IuO) » R update

L Qx I — O output function or» Rx I — I* input abstraction

0o Rx O - O* output abstraction
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Abstraction: Formal definition

Possibly Infinite State Mealy Machine Abstraction
I,0 symbols IA  OA abstract symbols
Q.9 states , initial state R,rg states , initial state
0:Qx I - Q transition function R R x (IuO) » R update
L Qx I — O output function or Rx I — IA input abstraction

0o Rx O — O* output abstraction

Abstracted Mealy Machine

I , OA abstract symbols In general Nondeterministic

Q x R, <qg.ry> states , initial state

04 Qx Rx I - Q x R ftransition furycn:/
SAqr>,a?) = {< 8(q,0a),®r,a)> oy (r,a)=a*}

MiQx Rx IA — OA  output function:

A AY = R - qA
MG o) = L0 O i Alomiaa ki~



Abstraction: Formal definition

Abstracted Mealy Machine
I4 ,0A abstract symbols
Q x R, <qg,ry> states , initial state
0% Q x Rx I - Q x R transition function:
8A(«qr>, a*) = {« 8(q,0a),8%(r ,a) > | oy (r,a)=a*}
MiQx Rx I - OA output function:
M(<qr>, a*) = {ag (8R(r,a) , A (q,a)) lor(r,a)=a*}

Exists equivalence # on Q xR s.t.
<q,r> 2 <q'r> and og(r,a) = og(r',a’) implies
- <9J (q ,a),R(r,a)> =& <9 (q' ,a), ok(r', a’) »
= oo (O%(r,a),A(q,a)) = ag(BR(r',a),Ar(q,a))
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Modified Criterion

Exists equivalence # on Q xR s.t.

+ <q,r>®<qr> and og(r,a) = og(r',a’) implies
- <8(q,a),R(r,a)> = <d&(q,d),dR(r', a)>
- 0o (8%(r,a),A(q,a)) = oo (B%(r', a),A(q,a))

Can happen, e.g., if Q can be written L x R, and
if 6 (<l,r>,a)= «I'r'> then
- r'=08R(r,a)
- |I' depends only on ox(r, a)
if L (<l,r>,a)= b then

- 0p (BR(r,a),b ) depends only on oy(r,a)
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Mapping parameters of input messages

first next last
cid Curld = L and
Method = INVITE <otherwise>
or cid = Curld
cseq CurSeq = 1 and cseq = CurSeq+l
Method = INVITE <otherwise>

or cseq = CurSeq

Maintaining auxiliary variables

first last next
Curld .= cid <unchanged>
CurId .= cseq  <unchanged>  <unchanged>
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Inference by Abstraction

Learner | INVITE(First. 7irst) psgistant | SIP
g (SUT)
auxiliary
variables:
B Curld = 1
) CurSeqg = 1 |
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Inference by Abstraction

Learner | INVITE(First. 7irst) psgistant | SIP
g (SUT)
auxiliary
variables:
J Curld = 558
) CurSeqg = 1 |
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Inference by Abstraction

Learner INVITE(first, first) Assistant INVITE(S58, 1) . SIP
g (SUT)
auxiliary
variables:
J Curld = 558
) CurSeqg = 1 |
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Inference by Abstraction

Learner INVITE(first, first) Assistant INVITE(SS8, 1) STP
! (SUT)
auxiliary
variables:
_ Curld = 558
curseq =1 |\ 100558, 2)
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Learner

Inference by Abstraction

MOVEP'10 on Automata Learning

INVITE(first, f/r'sf{ Assistant INVITE(SS8, 1) .
auxiliary
variables:
B Curlid = 558
100(first, next) CurSeq =1 | 100(558, 2)

SIP

(SUT)
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Learner

Abstraction Mappings

Input-abstr

INVITE(first, firgt)

\_/ rd

curld = 1L

L/

&

pd

100(first,next) \|CurSeqg =L )~ 1 50mes 2)

SN~
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Learner

Abstraction Mappings

INVITE(first, f/'r'sf{ Assistant | PNVITE(558,1) N
auxiliary
B Curld =5
100(first,next) \ |Curseq =

100(558,2)

Output-abstr

MOVEP'10 on Automata Learning
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Model inferred by Learner (part)

INVITE(first, first)200(first, first)

PRACK(¥irst,next)/200(first next)

ACK(first, first) €
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What the SUT must have done:

Variables: Curld, CurSeg

INVITE(cid,cseq) [Curld == CurSeq == L}/
Curld = cid, CurSeg = cseg;
100(CurId CurSeq)

PRACK(cid,cseqg) [cid == CurId
/\ cseg == CurSeg+1] / 200(Curld CurSegs-

ACK(cid,cseq) [cid == CurId
/\ cseq == CurSeq] / €
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Experiments

* Learner: the LearnLib tool (developed at TU Dortmund)
- Efficient implementation of L*
- Several equivalence oracles, e.g., controllable-size random test suite.
+ SUT: ns-2 protocol simulator
- Provides implementations of many standard protocols
- Rather convenient C++ interface (no packet analyzer necessary)

» Assistant
- Bridges asynchronous interface of LearnLib w. synchronous
interface of ns-2
- Implements instantiation of input symbols, and abstraction of
output symbols
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Learning SIP in ns-2

» Inference: about 1 thousand membership queries
one equivalence query

- Model w. 10 locations and 70 transitions

* ns-2 implementation does not check incoming cseq
parameter, just returns ift.
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Resulting Model

Fig. 3. Full 5IP model
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Transport Control Protocol (TCP)

* Only connection establishment and termination

+ SUT is ns-2 implementation of TCP

- Consider 2 sequence humber parameters
- Similar type of abstraction
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TCP

- Model of behavior of TCP in ns-2

* Only transitions with "accepted” values of input
parameters are shown.

* Values of parameters not displayed

N + AC EYN +ACK e T s I |
N - Pkl o, SYN + ACK je
A il i —_—
ACKfE e\ FIN + ACK fAC —— \ - - .
. _F \ e —" v et Tosrne N
: A 4 A Ve - — c/FIN +AC B g | f ]
SYN/SYN +ACK /N — - S ACK): FIN 4 pokje J
{ ——— par Py y— e ‘ s — d 4
L — FIN + ACK/ACK _______— — N A y— —— _.(@\/
— - ALK - —

=
T— ACK =z e
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Conclusions

Basic Principles of Automata Learning for Finite-
State systems understood

Learning and Conformance Testing:
- Two sides of the same coin.

* Learning for extended automata models largely
unexplored
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Some Future work

Techniques for handling common forms of data
Dynamically refining abstractions

_earning nondeterministic models

_earning timed models in practice

_earning under assumptions on module usage
Efficient search for counterexamples
Efficient construction of test harnesses

Some references can be found at
http://leo.cs.tu-dortmund.de:8100/
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