
O A t t L iOn Automata Learning
andand

Conformance Testingonformance est ng

Bengt JonssonBengt Jonsson
Uppsala University

Acknowledgments
Fides Aarts Therese Berg Johan Blom OlgaFides Aarts, Therese Berg, Johan Blom, Olga

Grinchtein, Anders Hessel, Falk Howar, Martin
Leucker, Maik Merten, Paul Pettersson, Harald, , ,
Raffelt, Bernhard Steffen, Johan Uijen

2MOVEP '10 on Automata Learning
...

Outline

• Motivation
• Automata LearningAutomata Learning
• Conformance Testing, Model Checking
• Extensions to richer Automata Models• Extensions to richer Automata Models
• Applications in Protocol Model Generation

3MOVEP '10 on Automata Learning
...

Modeling in System Development

Requirements
Verification/Model Checking

Model
Design

C f T ti

I l t ti

Code Generation
Conformance Testing

Implementation

4MOVEP '10 on Automata Learning
...

Model BasedTest GenerationModel BasedTest Generation
Model:
What the system should do

T t

y

Test case
generator

Test Suite
Test Objective:
What should be tested?

Well-Developed Tools:
•TGV, TorX, Gotcha, …
•Conformic Qtronic, …

Implementation
Under Test

Conformic Qtronic, …

5MOVEP '10 on Automata Learning
...

WTP

6MOVEP '10 on Automata Learning
...

Modeling Gap

• Typically, models are not available

• Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing
[A Hartman][A. Hartman]

Wh t t d if th is d l?• What to do if there is no model?
(the norm in practice)

7MOVEP '10 on Automata Learning
...

Supporting Model GenerationSupporting Model Generation
Model:
What the system is doing

M d l

y g

Model
Generation

T t D iTest Driver
Logs of Test Execution

Implementation
Under Test

8MOVEP '10 on Automata Learning
...

How to support generation of models?

• Model Behavior of existing implementation
– By observations gained during extensive testing

• Potential Applications:
R ssi n t stin– Regression testing

– Migrating from manual to model-based testing
– Modeling environment of SUT, librariesModeling environment of SUT, libraries

• Problem: Constructing State Machines fromProblem Constructing State Machines from
traces/executions/words
– Has been studied in Automata Learning

9MOVEP '10 on Automata Learning
...

Simplest form of Automata Learning

• From sample of words
• find simple(st) state machine that explains them

10MOVEP '10 on Automata Learning
...

Requirements Capture

• Generate State Machine Specification from set of
allowed (and disallowed) scenarios:

put(1) put(1) / coffee
put(1) / tee

Instances:
• Play engine [Harel,Marelly]put(1) / tee

put(2) /coffee
put(1) put (1) wait(10) / money_back

• Smyle [Bollig,Katoen,Kern,Leucker]

put(1) t(1)

put(2)

l1l0
put(1)

l1
put(1)

tee

ff

l1
wait(10)

coffee
money_back 11MOVEP '10 on Automata Learning

...

Compositional Verification[Giannakopoulou,Pasareanu et al]

Complex Model Checking Problem:Complex Model Checking Problem:

E M φ

If
Checking E || M |= φ too complex:
Fi d bst ti A f E s t :

Building A using Learning
ASSUME:

Find abstraction A of E, s.t.:

E refines A
A || M |

w || M |= φ
can be checked for single behavior w

Check w || M |= φ for many w,A || M |= φ

E || M |= φ

Check w || M | φ for many w,
Construct A from these checks
Check whether A satisfies premises

12MOVEP '10 on Automata Learning
...

Specification Mining[Ammons,Bodik,Larus]

API:

M
bind
listen bind

Maccept
close listen

read

Problem: Find restrictions on how API
calls may be ordered

Assume we have well-tested programs

accept

writem p g m
that use the API

Analyze executions of such programs.
Form an Automaton that summarize

close
write

these executions.

13MOVEP '10 on Automata Learning
...

Learning
(ll f)Instance Space (usually infinite)

16

3

12
985782

64

Hypothesis H

3
51

18
7

19 17
66

999975352

64

31
97 31

C n pt CConcept C LearnerTeacher 51+ 18- 64- 3+ 7+

S l
From Concept Class

Sample
p

14MOVEP '10 on Automata Learning
...

Some Terminology
Given an Instance space XGiven an Instance space X
• Concept is a subset of X
• Concept Class is a class of Concepts
• Sample is a (finite) set of labeled examples

– x+ where x∈C
– x- where x∉C

• Learner produces Hypothesis (in Concept Class) from Sample
• Teacher knows Concept, produces Sample

– Can also e g answer queries– Can also, e.g., answer queries
• Hypothesis H is correct if H = C
• Hypothesis H is consistent with sample if

if i l h H– if x+ in sample then x∈H
– if x- in sample then x∉H

• Concepts have Representations
size of Concept C = size of its Representation– size of Concept C = size of its Representation

15MOVEP '10 on Automata Learning
...

Automata learning
• Assume finite set Σ of symbols• Assume finite set Σ of symbols
• Instance space: Σ*
• Concept Class: Regular languages
• Representation of Concept: DFA
• Sample is a (finite) set of labeled words

w+ where w∈L– w+ where w∈L
– w- where w∉L

16MOVEP '10 on Automata Learning
...

Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

Σ alphabet of symbols input

Q states

δ Q Σ Q t iti f ti

q0

a
δ: Q х Σ → Q transition function

F ⊆ Q accepting states
b

b b

a

Assumptions:
q2

q1

b

a

b

•Deterministic

•Completely specified

a

Accepting state

17MOVEP '10 on Automata Learning
...

Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

Σ symbols

Q states

δ Q Σ Q t iti f ti

Myhill-Nerode:

Given language L
δ: Q х Σ → Q transition function

F ⊆ Q accepting states
For prefix u , define Lu = {v | uv ∈ L}

Nerode congruence: u ≈ u’ iff Lu = Lu’

Assumptions: Unique Minimal DFA accepts regular L

•Deterministic

•Completely specified

Q : equivalence classes [u]≈
δ ([u]≈ ,a) = [ua]≈ transition function

F : {[u]≈ | u ∈ L} accepting states
18MOVEP '10 on Automata Learning

...

Automata Learning: Frameworks
Construct DFA from sample of accepted and rejected wordsConstruct DFA from sample of accepted and rejected words.
Passive learning: sample given

• Only accepted words Teacher
(positive sample)

• Accepted and rejected words
Observing SUT/test suites Learner

Teacher

w1+ w2+ w3+ w4+
w5- w6- w7-g

Active learning: Learner chooses words, teacher classifies
Testing SUT M b hTesting SUT

Teacher

Membership query:
is w accepted or rejected?

Learner
w is accepted/rejected

19MOVEP '10 on Automata Learning
...

Mealy Machines

input

Finite State Machines w. input & output

I input symbols

q0

a/1

output O output symbols

Q states

δ Q I Q t iti f ti b/1

b/0 b/0

a/0
δ: Q х I → Q transition function

λ: Q х I → O output function

•Often used for protocol modeling, for

q2
q1

b/0

a/0

b/0f f p m g, f
protocol testing techniques,

Assumptions:

D t mi isti a/0•Deterministic

•Completely specified

20MOVEP '10 on Automata Learning
...

Passive Learning:
Construct DFA from sample of accepted and rejected wordsConstruct DFA from sample of accepted and rejected words.
• Which DFA?
• The most succinct one! Teacher

– which conforms to sample,
– and has fewest states

Learner

Teacher

w1+ w2+ w3+ w4+
w5- w6- w7-

• Finding smallest DFA is NP-hard [Gold 78]
• Can be found by constraint solving (Biermann’s algorithm)• Can be found by constraint solving (Biermann s algorithm)

21MOVEP '10 on Automata Learning
...

Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem -

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a b

ba
+ +

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q

b

a

a

a b

-

qu = qv implies qua = qva

Try example for n = 3

aa

b

++ -

+

22MOVEP '10 on Automata Learning
...

Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem 1

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a b

ba
2 2

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q

b

a

a

a b

3 1

qu = qv implies qua = qva

Try example for n = 3

aa

b

22 1

2

23MOVEP '10 on Automata Learning
...

Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem
b

1

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a, b

a
b 2

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q
a

3

qu = qv implies qua = qva

Try example for n = 3
Ch kCheck
Accepted: a b aaa aabb bba
Rejected: λ aa aabj

24MOVEP '10 on Automata Learning
...

Discussion

• Problem w. Biermanns algorithm: Exponential
• Q: Is there a setting to learn automata

polynomially in some way?
• By Gold’s result, we cannot hope to learn minimal

DFA f bit lDFA from arbitrary sample.

25MOVEP '10 on Automata Learning
...

Identification in the LimitL

… aabb+ aab- aaa+ aa- b+ a+ λ- LearnerTeacher

a, b

b
1

a, b

a,b
1

a,

a
b 2

Enumeration of Σ*

2a

3

26MOVEP '10 on Automata Learning
...

Identification in the LimitL

… aabb+ aab- aaa+ aa- b+ a+ λ- LearnerTeacher

a, b

b
1

a,

a
b 2

a, b

a
1

a

3

b
a 2

3

b

3

27MOVEP '10 on Automata Learning
...

Identification in the LimitL

… aabb+ aab- aaa+ aa- b+ a+ λ- LearnerTeacher

a, b

b
1

a,

a
b 2 • Assume Teacher incrementally enumerates

all words (classified) in Σ*
f h

a

3 • After each word, Learner can use previous
words to form hypothesis H

Learner identifies L in the limitLearner identifies L in the limit,
if H converges to correct hypothesis after

finitely many wordsf y m y
Still, (exponentially) much data may be needed

28MOVEP '10 on Automata Learning
...

Efficient Identification in the Limit

… aabb+ aab- aaa+ aa- b+ a+ λ- LearnerTeacher

Concept Class is efficiently identifiable in the limit if
∃polynomials p,q, s.t. for any concept C in concept class
• Learner can produce H in time O(p(|seen sample|))
• Exists sample S of size O(q(|C|)) s.t. Learner

d t H h l t i Sproduces correct H whenever seen sample contains S

• S called “characteristic sample” for C• S called characteristic sample for C
• S can depend on Learner

29MOVEP '10 on Automata Learning
...

Observations
if Concept class is efficiently identifiable in the limitif Concept class is efficiently identifiable in the limit,

then

• Learner needs polynomial time to produce
hypothesis

h d l l• Concepts characterized by polynomial-size
characteristic sets

• With “helpful” Teacher the Learner needs only• With helpful Teacher, the Learner needs only
polynomially much data to infer C

• With “unhelpful” Teacher, the Learner may need a pf , m y
lot of data to infer C

• Learner should work well for characteristic sets,
should make “reasonable” hypotheses otherwise.

30MOVEP '10 on Automata Learning
...

Characteristic Samples
A characteristic sample S for C should uniquelyA characteristic sample S for C should uniquely

characterize C in the following sense:
Learner should produce hypothesis C from any sample p yp y p

that contains S and is consistent with C
Implies that if

h l f d• S is characteristic sample for C and
• S’ is characteristic sample for C’
th iththen either
• C is inconsistent with S’ or
• C’ is inconsistent with S• C is inconsistent with S
• (otherwise what to do with S ∪ S’ ?)

31MOVEP '10 on Automata Learning
...

Characteristic Samples for DFAs
A characteristic sample for L should identify its DFAA characteristic sample for L should identify its DFA.
This can be done by
• Demonstrating that there are n statesDemonstrating that there are n states

• Each state represented by access string u
u represents δ(q0,u)p (q0,)

• For each state q and symbol a,
uniquely identify δ(q,a)q y y q

32MOVEP '10 on Automata Learning
...

Separating Sequences
A separating sequence for q and q’ is a suffix vA separating sequence for q and q is a suffix v
such that

δ(q v) is accepting and δ(q’ v) is rejectingδ(q,v) is accepting and δ(q ,v) is rejecting
(or vice versa)

1 2 : λ a, b

b
1

1 3 : b (not a)
2 3 : λ a

b 2

3

a

3

33MOVEP '10 on Automata Learning
...

Separating Sequences
A separating sequence for q and q’ is a suffix vA separating sequence for q and q is a suffix v
such that

δ(q v) is accepting and δ(q’ v) is rejectingδ(q,v) is accepting and δ(q ,v) is rejecting
(or vice versa)

A separating family of DFA is a family of setsp g f y f f y f
{ Zq | q is a state of DFA}

s.t. Zq ∩Zq’ contains separating sequence for q and q’q q p g q q q

1 : λ b a, b

b
1

2 : λ
3 : λ b a

b 2

3

a

3

34MOVEP '10 on Automata Learning
...

Separating Sequences
A separating family of DFA is a family of setsA separating family of DFA is a family of sets

{ Zq | q is a state of DFA}
s t Z ∩Z ’ contains separating sequence for q and q’s.t. Zq ∩Zq’ contains separating sequence for q and q

If all Zq are equal (to W), then W is a characterizing f q q (), g
set

1 b
a, b

b
1

1 : λ b
2 : λ
3 : λ b

a
b 2

33 : λ b
a

3

35MOVEP '10 on Automata Learning
...

Separating Sequences
A separating family of DFA is a family of setsA separating family of DFA is a family of sets

{ Zq | q is a state of DFA}
s t Z ∩Z ’ contains separating sequence for q and q’s.t. Zq ∩Zq’ contains separating sequence for q and q

If all Zq are equal (to W), then W is a characterizing f q q (), g
set

W b
a, b

b
1

W : λ b
a

b 2

3

a

3

36MOVEP '10 on Automata Learning
...

Characteristic Sample
Let Sp(L) be prefixes in minimal spanning tree of DFA(L)Let Sp(L) be prefixes in minimal spanning tree of DFA(L)
Let K(L) be { ua | u ∈ Sp(L) a ∈ Σ }
Let Characteristic Sample beLet Characteristic Sample be

Sp(L) ∪ { uv | u ∈ Sp(L) ∪ K(L) v ∈ Zqu }

a, b
1

a

2

1
b

Λ
a
aa
b

b

ba
2

a
b 2

3

ab
aaa
aab
abb

1
a

b
3

a
2 1

b

2

a

3 aabbb

2

2

37MOVEP '10 on Automata Learning
...

Why characteristic sample?
When forming DFA from prefix tree:When forming DFA from prefix tree:
• The states {qu | u ∈ Sp(L) } cannot be merged

• since they are separated by suffixessince they are separated by suffixes
• Each state in {qu | u ∈ K(L) } can be merged with at

most one state in {qu | u ∈ Sp(L) }
• Easy to construct minimal DFA from sample

• if Sp(L) is known
ΛΛ
a
aa
b
ab

a

2

1
b

ba
2

ab
aaa
aab
abb
aabb

1
a

b
3

a
2 1

b

2 aabb
b

2

2

38MOVEP '10 on Automata Learning
...

State Merging Algorithms
• Traverse the prefix tree from root• Traverse the prefix tree from root
• For each new state

• if possible merge it with some seen stateif possible, merge it with some seen state
• Otherwise, promote it to a new state in the

resulting DFA
• Red states are determined to become DFA states
• Blue states (frontier) are the successors of red states,

waiting to be candidates for merging with red states.waiting to be candidates for merging with red states.
• Repeatedly
• Merge blue with red if no inconsistency results

“U bl ” bl t t b d• “Unmergeable” blue state becomes red

39MOVEP '10 on Automata Learning
...

State Merging: Example

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+

40MOVEP '10 on Automata Learning
...

State Merging: Example

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+

41MOVEP '10 on Automata Learning
...

State Merging: Example

a
-

b

b

a

+

b

a
+

b
-

a
+ -

bb

+

42MOVEP '10 on Automata Learning
...

State Merging: Example

a
-

b

b

a

+

b

a
+

b
-

a
+ -

bb

+

43MOVEP '10 on Automata Learning
...

State Merging: Example

b

a, b

b 2

1
b

a
b 2

3

a

44MOVEP '10 on Automata Learning
...

What if we change order?

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+

45MOVEP '10 on Automata Learning
...

About State Merging
• Order in which blue states are considered mattersOrder in which blue states are considered matters.
• If considered states stay within {qu | u ∈ K(L) }

a minimal DFA will be constructed
h “ b l” l• Otherwise, “suboptimal” merges may result

• Remedy: Teacher and Learner agree on a fixed technique
to construct Sp(L)p
• e.g., to consider strings in lexicographic order
• RPNI algorithm. [Oncina, Garcia]

• Otherwise: use heuristics for choosing “best merge”• Otherwise: use heuristics for choosing best merge ,
• e.g., to select states with “largest” subtrees.

46MOVEP '10 on Automata Learning
...

About State Merging
• Time Complexity (in size of sample):Time Complexity (in size of sample):

• At most a quadratic number of candidate merges
considered.
E ch m r t k s lin r tim t ch ck• Each merge takes linear time to check

• I.e., time complexity is polynomial.

47MOVEP '10 on Automata Learning
...

i L iActive Learning
Learner actively constructs the characteristic sample,

Teacher

Membership query:
is w accepted or rejected?

Teacher

is cc pt d/ j ct d
Learner

w is accepted/rejected

Yes/counterexample v

Oracle

E i lEquivalence query:
is H equivalent to A ?

48MOVEP '10 on Automata Learning
...

Ideas
• Maintain candidates forMaintain candidates for

Sp(L) K(L) W
where W is a distinguishing set

k b h f• Ask membership queries for
{ uv | u ∈ Sp(L) ∪ K(L) v ∈ W }

• If u in K(L) is separated from all prefixes in Sp(L) by
separating suffix, move u to Sp(L) and extend K(L)

• For new u’ in K(L) let W be large enough to separate u’• For new u in K(L) let W be large enough to separate u
from all but (at most) one prefix in Sp(L)

49MOVEP '10 on Automata Learning
...

1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

+

λ -
Sp(L)

a +
b +K(L)K(L)

50MOVEP '10 on Automata Learning
...

1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

+

λ -
a +Sp(L)

b +K(L)K(L)

51MOVEP '10 on Automata Learning
...

1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L)
ab -

K(L)

52MOVEP '10 on Automata Learning
...

1
b

Closed - Form Hypothesis a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) -

a,b

ab -
K(L)

a, b

+

53MOVEP '10 on Automata Learning
...

1
b

Ask Equivalence Query a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) -

a,b

bab -
K(L)

a, b

+

aab-

54MOVEP '10 on Automata Learning
...

1
b

Decompose counterexample a, b

a
b 2

W
Observation table

a

3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) b -

a,b

ab -
K(L) aab- a, b

+

55MOVEP '10 on Automata Learning
...

1
b

Add new suffix to W a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -Sp(L)

-
b

-
a

+ -
b

+

+

b + -
aa - -K(L) bab - -

K(L) aab-

56MOVEP '10 on Automata Learning
...

1
b

Not closed- Add new prefix to Sp(L)a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -
aa

Sp(L)
-

b
-

a
+ -

b

+

+

aa - -
b + -

K(L) bab - +
K(L) aab-

57MOVEP '10 on Automata Learning
...

1
b

Add new extensions to K(L) a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -
aa

Sp(L)
-

b
-

a
+ -

b

b

+
b

+

aa - -
b + -
ab - +K(L) b

b

+

b

+

aaa + -
aab - +

K(L) aab-

58MOVEP '10 on Automata Learning
...

About L* [Angluin]

• DFA with n states can be learned usingDFA with n states can be learned using
• ≤n equivalence queries
• O(|Σ|n2 + n log m) membership queries

f l l• m is size of longest counterexample
• Produced hypothesis is always minimal DFA which is

consistent with seen membership queriesp q
• These are a characteristic set for hypothesis

• Equivalence query idealizes (possibly) exponential search
for deviations from modelfor deviations from model

• The setup with Membership and Equivalence queries makes
it possible to formulate polymial-complexity algorithm.

59MOVEP '10 on Automata Learning
...

Mealy Machines

input

•Finite State Machines w. input & output

I input symbols

q0
output O output symbols

Q states

δ Q I Q t iti f ti
a/1

b/0

δ: Q х I → Q transition function

λ: Q х I → O output function

•Often used for protocol modeling, for

b/1

b/0

a/0

q2

b/0f f p m g, f
protocol testing techniques,

Assumptions:

D t mi isti

q1

b/0

a/0•Deterministic

•Completely specified

a/0

60MOVEP '10 on Automata Learning
...

Conformance Testing
• Given MM A construct a sample (i e a test suite) S suchGiven MM A, construct a sample (i.e., a test suite) S such

that A is “best fit” to explain S
• Typically: A is the only MM with ≤|A| states, which is

consistent with Sconsistent with S

61MOVEP '10 on Automata Learning
...

W th dW-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua | u ∈ Sp(L) a ∈ I }

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

q2
q1

b/0 b/0

a/0
62MOVEP '10 on Automata Learning

...

W th dW-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua | u ∈ Sp(L) a ∈ I }
Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ W }Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ W }

where W is a distinguishing set

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

b/1 a/0 a/0b/0
q2

q1

b/0 b/0
a/0 a/1b/0 b/0

a/0
63MOVEP '10 on Automata Learning

...

Z th dZ-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua | u ∈ Sp(L) a ∈ I }
Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ Z }Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ Zqu }

where {Zq | q ∈ Sp(L) } is a separating family of MM

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

b/1 a/0 a/0b/0
q2

q1

b/0 b/0

a/0
64MOVEP '10 on Automata Learning

...

Learning vs. Conformance Testing
• Learning: Find Concept A which is “best fit” to explain aLearning: Find Concept A which is best fit to explain a

given sample S
• Conformance Testing: Given Concept A, construct a sample

S such that A is “best fit” to explain SS such that A is best fit to explain S
• For automata learning: A characteristic sample for A is

also a conformance test suite for A

65MOVEP '10 on Automata Learning
...

L* vs. W-method
• A sample generated by L* is also a conformance test suiteA sample generated by L is also a conformance test suite

generated by the W-method
• A conformance test suite generated by the W-method is a

characteristic samplecharacteristic sample
• A is the only MM of size ≤ |A| which is consistent with S

Q: Can we check whether A is the only automaton of size
≤ |A| + k which is consistent with S

66MOVEP '10 on Automata Learning
...

Vasilevski-Chow test suite
• Let k =2Let k =2
• Test suite should allow non-minimised MM

q0

a/1 b/0
a/1

a/0

b/1
a/0

a/1

a/0
r1

b/0
r2

b/0

q2
q1

b/0 b/0

67MOVEP '10 on Automata Learning
...

Vasilevski-Chow test suite
• Let k =2Let k =2
• Test suite should allow non-minimised MM
• Must cope with anomaly

q0

a/1 b/0
a/1

a/0

b/1
a/0

a/1

a/0
r1

b/0
r2

b/0 ERROR

q2
q1

b/0 b/0
b/0 ERROR

68MOVEP '10 on Automata Learning
...

Resulting test suite
• Let W be a characterizing set for ALet W be a characterizing set for A

• VC-test suite has form

S = { uxv | u ∈ Sp(L) ∪ K(L) x ∈ I≤k v ∈ W }

• A is only MM of size ≤ |A| + k which is consistent with S

Si f l O(|Σ|k +1 2)• Size of sample: O(|Σ|k +1 n2)

69MOVEP '10 on Automata Learning
...

Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
OK

Conformance Testing

70MOVEP '10 on Automata Learning
...

Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
Counterexample w

Check behavior on w

71MOVEP '10 on Automata Learning
...

Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
Counterexample w

Check behavior on w

True counter
example / ERROR

72MOVEP '10 on Automata Learning
...

Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

A φA φ
Counterexample w

Check behavior on w

False counter example
/ New counterexample
for L*for L*

73MOVEP '10 on Automata Learning
...

LearnLib: a Tool for Inferring Models

• Developed at Dortmund Univ. [Steffen, Raffelt, Howar,
Merten]

• Central Idea: use domain specific knowledge to• Central Idea: use domain-specific knowledge to
reduce the number of queries:
– Prefix-closurePrefix closure
– Independence between symbols (e.g., in parallel

components)
– Symmetries

• These properties correspond to “filters” between
observation table and SUTobservation table and SUT

74MOVEP '10 on Automata Learning
...

Overview of the LearnLib
LearnLib

approximative
equivalence queries

state cover (DFA)

transition cover (DFA)

filters
prefix closure (DFA)

algorithms
Angluin (automatic)

chain of filters
query strategy
DFA and Mealy

W-method (DFA)

Wp-method (DFA)

transition cover (DFA)

UIO-method (DFA)

symmetry (DFA)

I/O determinism (DFA)

independence (DFA)
DFA and Mealy

Angluin (interactive)
chains of filters

state cover (Mealy)

transition cover (Mealy)

UIO method (DFA)

UIOv-method (DFA)
convert Mealy (DFA)

prefix closure (Mealy)

independence (Mealy)

chains of filters
access internal
constraints
insert examples
and distinguishing
strings

W-method (Mealy)

Wp-method (Mealy)

(y)

UIO-method (Mealy)

symmetry (Mealy)

model checking

g
DFA and Mealy

Others

UIOv-method (Mealy)
observation packs
discrimination tree
...

75MOVEP '10 on Automata Learning
...

Whata about Extensions of Automata?

• Input and output symbols parameterized by data values.
• State variables remember parameters in received input

Types of parameters could be e g• Types of parameters could be, .e.,g
– Identifiers of connections, sessions, users
– Sequence numbers

l– Time values

76MOVEP '10 on Automata Learning
...

Timed Automata
• Based on standard automata
• Clocks give upper and lower

bounds on distance in time lbounds on distance in time
between occurrences of
symbols.
T mp l p p ti s f Tim d

l0

t• Temporal properties of Timed
Automata (reachability, LTL, …)
can be model-checked

get ;
x ≥ 10 /
x := 0

put ;
x ≤ 2 /
x := 0

• Implemented in tools
(UPPAAL, IF/Kronos) l1

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) …

77MOVEP '10 on Automata Learning
...

Event-Recording Automata
• Timed Automata can not be

determinized in general
• Event-Recording Automata (ERA): lEvent Recording Automata (ERA)

One clock for each symbol, which
is reset on that symbol.
ERA n b d t mini d

l0

t• ERA can be determinized
Assumption:

Inference algorithm can precisely

get ;
xput ≥ 10

put ;
xget ≤
2g p y

control and record timing of
symbols. l1

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) …

Clocked words:Clocked words:
(get, [14.4,14.4]) (put, [2.0,14.4]) (get, [14.94,12.94]) (get, [0.96,13.9]) …

78MOVEP '10 on Automata Learning
...

Event-Recording Automata
(b l) { }Σ (symbols) {put, get}

L (locations) {l0, l1 }

l0 (initial location) ll0 (initial location)

E (edges) ⊆ L х Σ х Guards x L

F (accepting locations) ⊆ L

l0

t get ;
xput ≥ 10

put ;
xget ≤
2

l1

79MOVEP '10 on Automata Learning
...

Event-Recording Automata
(b l) { }Σ (symbols) {put, get}

L (locations) {l0, l1 }

l0 (initial location) l

Conjunctions of
interval constraints

l0 (initial location)

E (edges) ⊆ L х Σ х Guards x L

F (accepting locations) ⊆ L

l0

tSemantics

Q (states) L х R≥0 х R≥0

(i i i l) (l [0 0])

get ;
xput ≥ 10

put ;
xget ≤
2

q0 (initial state) (l0, [0,0])

I Σ х R≥0 х R≥0

δ: Q х I → Q

l1

δ: Q х I → Q

δ(<l0 , [0,0]> ,< get, [14.4,14.4]>) = <l1 , [0, 14.4]>

δ(<l1, [0,14.4]> ,< put, [2.0,14.4]>) = <l0 , [2.0 ,0]>

80MOVEP '10 on Automata Learning
...

Non-Unique Representation
• Deterministic ERAs do not have unique representations

a ; xa = 1 b ; x ≥ 1
l0

a ; xa
l1 l2

b ; xa ≥ 1

b ; xb ≥ 2

81MOVEP '10 on Automata Learning
...

Learning DERAs by Quotienting [Grinchtein , Leucker, al.]

• Find equivalence relation ≈ on symbols and states, s.t.
– ≈ respects accepting/non-accepting states
– q ≈ q’ a ≈ a’ implies δ(q,a) ≈ δ(q’,a’)

• Learn the Quotient DFA
Σ / ≈ Q / ≈ δ≈ (δ([q]≈,[a] ≈) = [δ(q,a)] ≈) F / ≈

For DERAsFor DERAs
• Equivalence on states based on region equivalence
• Assume largest constant Ka in constraints on xa
• <l , [xa, xb]> ≈ <l , [ya, yb]> iff

– xa > Ka and ya > Ka or
integer parts of xa and ya same and xa is integer iff ya is integer

– same for xb and ybb yb
– If xa ≤ Ka and xb ≤ Kb then xa ≤ xb iff ya ≤ yb

• <a , [xa, xb]> ≈ <a , [ya, yb]> iff for all k ≤ Ka
k ff k d k ff k– xa ≤ k iff ya ≤ k and xa ≥ k iff ya ≥ k

82MOVEP '10 on Automata Learning
...

Regions: From infinite to finite

Concrete State
(l [2 2 1 5])

Symbolic state (region)
(l)(l, [2.2, 1.5]) (l,)

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

83 An equivalence class (i.e. a region)
There are only finite many such!!

MOVEP '10 on Automata Learning
...

Abstraction of symbols

Concrete Symbol
(a [2 2 1 5])

Abstract symbol
(a)(a, [2.2, 1.5]) (a,)

xb
xb

b

22 ∞
11

xa

1 2 3

xa

1 2 3

84 MOVEP '10 on Automata Learning
...

We need only initial regions

Concrete State
(l [0 7 0])

Symbolic state (region)
(l)(l, [0.7, 0]) (l,)

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

85 An equivalence class (i.e. a region)
There are only finite many such!!

MOVEP '10 on Automata Learning
...

Regions preserved by transitions

Concrete State
(l [0 7 0])

Symbolic state (region)
(l)(l, [0.7, 0]) (l,)

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

86 An equivalence class (i.e. a region)
There are only finite many such!!

MOVEP '10 on Automata Learning
...

Simple DERAs
• DERA with ”small guards”

l0
l0 get ;

0 < xput < 1 0 < xget< 1

get ;
x ≥ 10

put ;
x t ≤

get ;
xput = 10
xget > 2

put ; get ;

get ;
xput = xget = 0

l1

xput ≥ 10xget ≤
2

l1

put ;
xget = 2 xput >10

l1

g
xput > 10

l1

87MOVEP '10 on Automata Learning
...

M dif iModifying Setup
The following setup does not work

Teacher

Membership query:
is w accepted or rejected?

Teacher

is cc pt d/ j ct d
Learner

w is accepted/rejected

Yes/counterexample v

Oracle

E i lEquivalence query:
is H equivalent to A ?

88MOVEP '10 on Automata Learning
...

ddi iAdding Assistant
Learner actively constructs the characteristic sample,

T h

Membership query:
For timed word

TeacherMembership query
for abstract words

Assistant
w is accepted/rejected

Yes/counterexample v

Learner

Oracle
Equivalence query:

Y s/count r amp
Equivalence query

for quotient automata
q q y

For timed automata

89MOVEP '10 on Automata Learning
...

Query Complexity

• Size of Region graph is roughly
O(|L| K|Σ|)

• Number of Membership Queries is about cubic in this numberNumber of Membership Queries is about cubic in this number

90MOVEP '10 on Automata Learning
...

Single-Clock Automata [Verwer et al. 09]

Consider Deterministic Timed Automata with one clock
• Still, no unique minimal representation
• But there is a variant of Nerode CongruenceBut, there is a variant of Nerode Congruence

– if we know where resets occur

Ti d d
l0

Timed word:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) …

Clocked word:

get ;
x ≥ 10 /

put ;
x ≤ 2 /

Clocked word:
(get, 14.4) (put, 2.0) (get, 12.96)

(get, 14.4) reset (put, 2.0) reset (get, 12.96) reset
I i l

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0

Is equivalent to
(get, 12.4) reset
but not to
(get, 12.4)

91MOVEP '10 on Automata Learning
...

l1

Single-Clock Automata [Verwer et al. 09]

The timed language can be formed from a finite number of
Congruence classes
Only it must be determined when to reset?Only, it must be determined when to reset?
Define canonical form by prioritizing conflicts

l0

get ;
x ≥ 10 /

put ;
x ≤ 2 /

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0

92MOVEP '10 on Automata Learning
...

l1

Refining Guards [Verwer et al. 09]

• Guards can be refined by counterexamples

Guards refined from counterexamples
• get @0 put @2 accepted
• get @3 put @7 rejected
Determine the reason for difference by

l0

Determine the reason for difference by
investigating other traces

• (binary) search procedure

get ;put ;
• Finds ”explaining pair”, e.g.,

– get @2.2 put @4.2 accepted
– get @2 2 put @4 7 rejected

l1

– get @2.2 put @4.7 rejected
• Suggests reset at get

and guard x ≤ 2 on put transition

93MOVEP '10 on Automata Learning
...

l1 g p

Single-Clock Automata [Verwer et al. 09]

Have ”reasonable” canonical forms
Exist characteristic samples which are polynomial in size of
canonical form (does not depend on largest constant)canonical form (does not depend on largest constant)
Learning can be polynomial in (Membership,Equivalence)-

query model

Version for multiple clocks [Grinchtein,Jonsson]

Higher complexity
l0 g p y

get ;
x ≥ 10 /

put ;
x ≤ 2 /

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0

94MOVEP '10 on Automata Learning
...

l1

Applications to RealisticApplications to Realistic
ProcotolsProcotols

95MOVEP '10 on Automata Learning
...

SIP Protocol [Aarts,Jonsson, Uijen]

From RFC 3261:From RFC 3261:
• SIP is an application-layer control protocol that can

– establish, modify, and terminate multimedia sessions (conferences) such
as Internet telephony callsas Internet telephony calls.

– invite participants to already existing sessions, such as multicast
conferences.

96MOVEP '10 on Automata Learning
...

Structure of SIP packets
Meth d(Fr m;T ; C ntact; CallId; CSeq; Via) whereMethod(From;To; Contact; CallId; CSeq; Via), where
• Method: type of request, either INVITE, PRACK, or ACK.
• From and To: addresses of the originator and receiverFrom and To addresses of the originator and receiver
• CallId: unique session identier.
• Cseq: sequence number that orders transactions in a session.
IGNORE THE BELOW
• Contact: address where the Client wants to receive input
• Via: transport path for the transaction• Via: transport path for the transaction.

97MOVEP '10 on Automata Learning
...

part of SIP Server
Variables: From, CurId, CurSeq
C t t M

s0

INVITE(from,to,cid,cseq) [to == Me]/
From = from ; CurId = cid ; CurSeq = cseq;

100(From,to,CurId,CurSeq)

Constants: Me

0

s1

100(From,to,CurId,CurSeq)

PRACK(from to cid cseq) [from == FromPRACK(from,to,cid,cseq) [from == From
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq+1] / 200(From,to,CurId,CurSeq+1)

s2

ACK(from to cid cseq) [from == From

s3

ACK(from,to,cid,cseq) [from From
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq] / ε

98MOVEP '10 on Automata Learning
...

Finding an Abstraction
• Abstraction of Concrete Message PRACK(558 1)• Abstraction of Concrete Message PRACK(558,1)

depends on internal state of SUT
previous history

• Assistant must maintain relevant parts of history:
e.g., local copies of CurId, CurSeq

99MOVEP '10 on Automata Learning
...

Adapting to Automata Learning

Learner Assistant SIP
(SUT)(SUT)

100MOVEP '10 on Automata Learning
...

Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(558,1)

(SUT)

100(558,2)

101MOVEP '10 on Automata Learning
...

Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

(SUT)

100(558,2)100(first,next)

102MOVEP '10 on Automata Learning
...

Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id

(SUT)

CurId = …
CurSeq = … 100(558,2)100(first,next)

103MOVEP '10 on Automata Learning
...

Abstraction: Formal definition
P bl f l h

input

Possibly Infinite State Mealy Machine

I input symbols

O output symbols

q0

a/1

output
O output symbols

Q states

q0 initial state
b/1

b/0 b/0

a/0δ: Q х I → Q transition function

λ: Q х I → O output function

q2
q1

b/0

a/0

b/0

a/0

104MOVEP '10 on Automata Learning
...

Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I input symbols

O output symbols

Abstraction

IA abstract input symbols

OA abstract output symbolsO output symbols

Q states

q0 initial state

O abstract output symbols

R states

r0 initial state

δ: Q х I → Q transition function

λ: Q х I → O output function

δR: R х (I∪O) → R update

αI: R х I → IA input abstraction

R O OA b iαO: R х O → OA output abstraction

105MOVEP '10 on Automata Learning
...

Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I , O symbols

Q q0 states initial state

Abstraction

IA , OA abstract symbols

R r0 states initial stateQ , q0 states , initial state

δ: Q х I → Q transition function

λ: Q х I → O output function

R , r0 states , initial state

δR: R х (I∪O) → R update

αI: R х I → IA input abstraction

αO: R х O → OA output abstraction

106MOVEP '10 on Automata Learning
...

Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I , O symbols

Q q0 states initial state

Abstraction

IA , OA abstract symbols

R r0 states initial stateQ , q0 states , initial state

δ: Q х I → Q transition function

λ: Q х I → O output function

R , r0 states , initial state

δR: R х (I∪O) → R update

αI: R х I → IA input abstraction

αO: R х O → OA output abstraction

Abstracted Mealy Machine
I l N d t i i tiIA , OA abstract symbols

Q х R , <q0,r0> states , initial state

δA: Q х R х IA → Q х R transition function:

In general Nondeterministic

δ : Q х R х I → Q х R transition function:

δA(<q,r> , aA) = { < δ (q , a),δR(r , a) > | αI (r , a) = aA }

λA: Q х R х IA → OA output function:

λA(<q,r> , aA) = { αO (δR(r , a) , λ (q , a)) | αI (r , a) = aA }
107MOVEP '10 on Automata Learning

...

Abstraction: Formal definition
Abstracted Mealy Machine

IA , OA abstract symbols

Q х R , <q0,r0> states , initial state

δA: Q х R х IA → Q х R transition function:

δA(<q,r> , aA) = { < δ (q , a),δR(r , a) > | αI (r , a) = aA }

λA: Q х R х IA → OA output function:λ : Q х R х I → O output function:

λA(<q,r> , aA) = { αO (δR(r , a) , λ (q , a)) | αI (r , a) = aA }

E lExists equivalence ≈ on Q х R s.t.
• <q,r> ≈ <q’,r’> and αI(r, a) = αI(r’,a’) implies

< δ (q a) δR(r a) > ≈ < δ (q’ a’) δR(r’ a’) >– < δ (q , a), δR(r , a) > ≈ < δ (q , a), δR(r , a) >
– αO (δR(r , a) , λ (q , a)) = αO (δR(r’, a’) , λ (q’, a’))

108MOVEP '10 on Automata Learning
...

Modified Criterion

Exists equivalence ≈ on Q х R s.t.
• <q,r> ≈ <q’,r’> and αI(r, a) = αI(r’,a’) implies

δ () δR() δ (’ ’) δR(’ ’)– < δ (q , a), δR(r , a) > ≈ < δ (q’ , a’), δR(r’, a’) >
– αO (δR(r , a) , λ (q , a)) = αO (δR(r’, a’) , λ (q’, a’))

Can happen, e.g., if Q can be written L х R, and
• if δ (<l,r> , a) = <l’,r’> then

’ δR()– r’ = δR(r , a)
– l’ depends only on αI(r, a)

• if λ (<l,r> , a) = b thenif λ (l,r , a) b then
– αO (δR(r , a) , b) depends only on αI(r, a)

109MOVEP '10 on Automata Learning
...

M i t f i tMapping parameters of input messages
first next last

cid CurId = ⊥ and
Method = INVITE

or cid = CurId
<otherwise>

or cid = CurId
cseq CurSeq = ⊥ and

Method = INVITE
or cseq = CurSeq

cseq = CurSeq+1
<otherwise>

Maintaining auxiliary variables
or cseq = CurSeq

first last next

CurId := cid <unchanged>

CurId := cseq <unchanged> <unchanged>

110MOVEP '10 on Automata Learning
...

Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first)

auxiliary
variables:
C Id ⊥

(SUT)

CurId = ⊥
CurSeq = ⊥

111MOVEP '10 on Automata Learning
...

Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1

112MOVEP '10 on Automata Learning
...

Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1

113MOVEP '10 on Automata Learning
...

Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)

114MOVEP '10 on Automata Learning
...

Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)100(first,next)

115MOVEP '10 on Automata Learning
...

Abstraction Mappings

Input-abstr

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id ⊥

(SUT)

CurId = ⊥
CurSeq = ⊥ 100(558,2)100(first,next)

116MOVEP '10 on Automata Learning
...

Abstraction Mappings

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)100(first,next)

Output-abstrp

117MOVEP '10 on Automata Learning
...

Model inferred by Learner (part)

s0 INVITE(first first)/200(first first)0

s1

INVITE(first,first)/200(first,first)

PRACK(first,next)/200(first,next)

s2

ACK(first first)/ ε

s3

ACK(first,first)/ ε

118MOVEP '10 on Automata Learning
...

What the SUT must have done:
Variables: CurId, CurSeq

s0

INVITE(cid,cseq) [CurId == CurSeq == ⊥]/
CurId = cid ; CurSeq = cseq;

100(CurId,CurSeq)0

s1

100(CurId,CurSeq)

PRACK(cid cseq) [cid == CurIdPRACK(cid,cseq) [cid CurId
/\ cseq == CurSeq+1] / 200(CurId,CurSeq+1)

s2

ACK(cid cseq) [cid == CurId

s3

ACK(cid,cseq) [cid CurId
/\ cseq == CurSeq] / ε

119MOVEP '10 on Automata Learning
...

Experiments

• Learner: the LearnLib tool (developed at TU Dortmund)
– Efficient implementation of L*

S v r l quiv l nc r cl s c ntr ll bl siz r nd m t st suit– Several equivalence oracles, e.g., controllable-size random test suite.

• SUT: ns-2 protocol simulator
– Provides implementations of many standard protocolsProvides implementations of many standard protocols
– Rather convenient C++ interface (no packet analyzer necessary)

• Assistantss stant
– Bridges asynchronous interface of LearnLib w. synchronous

interface of ns-2
I l i i i f i b l d b i f– Implements instantiation of input symbols, and abstraction of
output symbols

120MOVEP '10 on Automata Learning
...

Learning SIP in ns-2

• Inference: about 1 thousand membership queries
one equivalence query

• Model w. 10 locations and 70 transitions
• ns-2 implementation does not check incoming cseq

parameter, just returns it.

121MOVEP '10 on Automata Learning
...

Resulting Model

122MOVEP '10 on Automata Learning
...

Transport Control Protocol (TCP)

• Only connection establishment and termination
• SUT is ns-2 implementation of TCP
• Consider 2 sequence number parameters
• Similar type of abstraction

123MOVEP '10 on Automata Learning
...

TCP

• Model of behavior of TCP in ns-2
• Only transitions with “accepted” values of input

parameters are shownparameters are shown.
• Values of parameters not displayed

124MOVEP '10 on Automata Learning
...

Conclusions
• Basic Principles of Automata Learning for Finite-Basic Principles of Automata Learning for Finite

State systems understood
• Learning and Conformance Testing:Learn ng and Conformance est ng

– Two sides of the same coin.
• Learning for extended automata models largely g g y

unexplored

125MOVEP '10 on Automata Learning
...

Some Future work
• Techniques for handling common forms of dataTechniques for handling common forms of data
• Dynamically refining abstractions
• Learning nondeterministic modelsLearning nondeterministic models
• Learning timed models in practice
• Learning under assumptions on module usage• Learning under assumptions on module usage
• Efficient search for counterexamples
• Efficient construction of test harnesses• Efficient construction of test harnesses
• Some references can be found at
http://leo cs tu dortmund de:8100/http://leo.cs.tu-dortmund.de:8100/

126MOVEP '10 on Automata Learning
...

