On Automata Learning
and
Conformance Testing

Ronnat TAane
DC||H| UUIlDDUll

Uppsala University

Acknowledgments

Fides Aarts, Therese Berg, Johan Blom, Olga
Grinchtein, Anders Hessel, Falk Howar, Martin
Leucker, Maik Merten, Paul Pettersson, Harald
Raffelt, Bernhard Steffen, Johan Uijen

MOVEP'10 on Automata Learning

Outline

* Motivation

- Automata Learning
» Conformance Testing, Model Checking

- Extensions to richer Automata Models

» Applications in Protocol Model Generation

MOVEP'10 on Automata Learning

Modeling in System Development

Requirements |
q ’ e—WVerificaﬂon/Model Checking ‘
Model
Design “

P2
INIT
@ —
C) \ L\darﬂ \ doWJ
sl datr B — -
=0 —
c==10 — —
sop? =10 - fast? |
sop? [Hop!
) & TPT 0K
85

| . N Conformance Testing
‘ Code Generation)

Implementation ‘

MOVEP'10 on Automata Learning

Model:
What the system should do

ctl

P2

INIT
(@ b
@ \ st | Slowqj
Sl L -
=0 il
c==10 - -
op? c=10 fadt? |
stop? stopl
& = P2 0K

Test case

generator — ™\

Test Suite

Test Objective:
What should be tested?

Well-Developed Tools:

Implementation
Under Test

MOVEP'10 on Automata Learning 5

C:/Documents and Setting WAP_MODEL.xml - UPPAAL ==
File Templates Y“ew Queries Options Help

| BlalE|a]aals

System Editor Simulator IVerifier I
Drag out | WTPO ;I

Enabled Transitions
SOUTSLP 1 [Class_|]==
TSAP _Rodroke?

HCVTID NULL

(TermRoy2.

oveFromExternall, DAT, ua THSAP _p

TR _Invoke_inc
SDUTSAP _I[Class_|] 1=

e oo WTP
(=1 o= | N
resTIDreald: =fiuLL, y Usck .= SDUITSeP U 1% 1],
0, SOUTSAP J]TIDnew I] ==hULL
e .—NULL :
Egm) LISTEM = SDUTSAP Ylass 1], RovTID »= LagTID,
pmmoumzpmwwm ol SDU[TSAP I][TIDHWPUQF&RBI BOCMEL s 1y OKE ResTID - LadTID <=y
o, RoTiD == LadTiD, LastTID = RevTID
el i TID_TEST _N@GETIDL astTID = W
© resTIDreg(] 3= RevTID TID_TEST 0K cpTRSAp_Up [[Clear I] ==
troel
__ SOU[TSAP_JTIDnew] —MULL, =TSP |,
clean! =
S TRO | oumsae Qg:gnew\ MULL, R oD = LA TID, dat= TREAP_Lp_|
- SDUTSAP 1] Clesr =0 LaaTID -ReTID = W LastTiD -RewTID == W
= - LagtTID:=RevTID

Q| | | TSAP_Send
SDUTELP J]TIDnew |]==TRLE TR _Irraoke_jncl!
deativateR0l SDU[TSAP I][C\ear =1, - &
Mext Reset DUITSAP TP T ype, La=TID =0
TR _&hort_ind! SDU[TSAP TTDwe
Sirmulation Trace SDU[TSAPTITID_IT = RevTiD, SOUTSAP INTIDnewd==NLILL, artan)
ov3]=1, LagtTID == RewTID SOUTRSEP Down IITID_J==RenTID, | evl0l=1,
(zeroStored, W, -, LISTEN, LISTEN, M.~ | procCount =procCount-1 ﬁ%ﬂgRSAP Tl Clesr_1]==0 dass==2rn e procCourt =procC cunt-1
(TerminalSend.s) TIDOH AT sro = procCount =procC ednt+1
clet —TRSAD Up_ () mvoKE_RESP_waT
(zeroStored, WAIT, -, LISTEN, LISTEN, M
TR_Resutcrt SDU[TSAP I|[TIDoE]
(TerminalSend. 12 SDUTSAP (][Class_(1=0 feiys = SDU[TSAP JITID_l == RevTID

TEAP_Rovick?
pvoDCount-pmchmﬂ
SDUTSAP][Clear_|]==
TEAP _Sendl
SDUTSAR TR Type_lF=TP _ock,
SDLI[TSAP TTID_I}=ReTID,

FC ot = procCourt.
pricCount=practout- e op & cdmokeRID?
procC ount =procC ount+1

(zeroStored, WAIT, -, LISTEN, LISTEN, M
([TerminalSend. 16 Terminsl 2MEP!, TSAP
(zeroStared, -, -, LISTEN, LISTEN, MULL,
(TSAP_2 .3 moveFromExternall, DATA_C
(zeroStared, -, -, LISTEN, LISTEN, MULL,
(TSAP_2E)

(zeroStored, newTID, -, LISTEM, LISTEM
(TSAP_28.TSAP_Rovimvokel, WIPOA.T
(zeroStared, -, -, RCY_INWOKE, LISTEN,

RESULT_\WalT

o toy_invoke_resend

frocC ount =proc ourt-1

pmoCoum : proccaurt:l e

froci ount=procC ourt+1

TR _Resut_req?

RCR:=0,
froc ount =procC ount+1

SDUTRSLP _Up_][Clear_|]==

SDUTRSAP _Up I][TID_|]=RevTID,
SDUTRESP Up_][Clear_|]:=1

el
srr=TREAP_Down_|,
dst:=WTRO_| Ak Sent==

SDU[TSAP J][Clear_I]==
TSAP_Send!

SDU[TSAP _IIWTP T ype_IF=SWTP_ack,

dean!
dat=TSap_|

TS&F _Zend!

(o2 SDUTSAPTID_]=-ReTID SDU[TSAP IIWTF Type_I1=ATR_Result SDUTSAP 1Clekr 11=-0 bockount et

(zeroStored, WAIT, -, RCY_INVOKE, LIS TSP _Rovack? SDUTSeP JTID_IF=RevTID, capy

WTPD8) procCount=procCouns 0 UL TRESP AT SIS qarrn SSorTELL

(zeroStored WAIT, -, TID_TEST_MCHK, L ‘—"@“-———____ = deadlvaieADl B LI
(WTROLG movel, DATA_COPY.1 move?) TermRcy2 TSAP_2 TerminalSend WTPOD WTP1 WSP_R Session_R A0 Y] RO R1 HTTP_Server Method0 Method1 DATA_COPY
(zeroStored, WAIT, -, - LISTEM, MULL, - L 1T 1T 1T 1T 1T 1T i 1T il 1T 1T 1T 1T 1L 1 ﬂ

(ATPO.7 TSAP_Sencl, TSAP_2.1 TSAP_ Hj H] Hj H] Hj H] Hj . ‘ . | — ~ | — ~ | . H] H] Hj H]
czeroStored, -. - TOOK_WAIT, LISTEN = = = = = = = llnactwe][mactl\re][|nact|\re][|nact|\re] = = = =
(TS&P_2.2moveToExternal, DATA_COF
(zeroStored, -, -, TIDOK_WAIT, LISTEM, []

(TS&P_2.5MEPZTerminall, TermRowz.1.

| : | !' t =

Trace File Clean
Prese IHext Replay
tored [E

clean

/ MOVER 10 on AlutomatalL earning

I I I I I
WAIT
Slovwy Fast
elaan LI

i start H S * 4 MSN Messenger | § max‘leitgeb@tac...l) Inbox - Microsaf.,, | = outlook Send,l’Re...l B 2 windows Co... v| L3 Windows Exp... v| 2 java v| X bash | &1 SimplyCapture - ... | 5 lw 3@@ @@ @_-) :% « 3D L9 1016

Cpeh Save Randotm

Modeling Gap

Typically, models are not available

Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing
[A. Hartman]

- What to do if there is no model?

(the norm in practice)

MOVEP'10 on Automata Learning

Supbortina Model Generatio
FPEEY! Y IVAIVATT Uil K ivig
Model:
What the system is doing
e o]
&—06 0 =) é& Model
Generation
r Test Driver
Logs of Test Execution ‘ /
Implementation |
Under Test

MOVEP'10 on Automata Learning 8

How to support generation of models?

Model Behavior of existing implementation
- By observations gained during extensive testing

Potential Applications:

- Regression testing

- Migrating from manual to model-based testing
- Modeling environment of SUT, libraries

Problem: Constructing State Machines from
traces/executions/words
- Has been studied in Automata Learning

MOVEP'10 on Automata Learning

Simplest form of Automata Learning

* From sample of words
+ find simple(st) state machine that explains them

MOVEP'10 on Automata Learning

10

Requirements Capture

+ Generate State Machine Specification from set of
allowed (and disallowed) scenarios:

put(1) put(1) / coffee Instances:
pUT(l) / tee i PIGY englne [Harel Marelly]
pUT(Z) /COffee . Smyle [Bollig,Katoen,Kern Leucker]
put(1) put (1) wait(10) / money_back

put(2)

wait10~()

MOVEP10 on ARSHAEY esd G K 11

CO mpOS |T|O HC(I Ver' if |CGT|O n[GiannakopouIou,Pasareanu et al]

Complex Model Checking Problem:

E || M ®

If Building A using Learning
Checking E || M |= ¢ too complex: ASSUME:
Find abstraction A of E, s.t.: wllM |z o

can be checked for single behavior w
AlIM I= o Check w [[M |= ¢ formanyw,
_______________ Construct A from these checks
EIIM |= o Check whether A satisfies premises

E refines A

MOVEP'10 on Automata Learning 12

S P@C if i CGT i O n M i n i ng[Ammons,Bodik,Larus]

API:

bind

listen

accept M

close

Problem: Find restrictions on how APT
calls may be ordered

Assume we have well-tested programs
that use the API

Analyze executions of such programs.

Form an Automaton that summarize
these executions.

bind

listen

\

accept

close

MOVEP'10 on Automata Learning

read

13

Learning

Instance Space (usually infinite)

16 ,
5782 12 o8 /Hypothesus H
64 \
66
5352 99997 18
9
~
N
Concept C

"

[Teacher F 51+ 18- 64- 3+ 7+ [Learner]

/

From Concept Class

Sample
MOVEP'10 on Automata '

14

Some Terminology

Given an Instance space X
Concept is a subset of X
Concept Class is a class of Concepts

Sample is a (finite) set of labeled examples
- x+ where xeC
- x- where xe¢C

Learner produces Hypothesis (in Concept Class) from Sample
Teacher knows Concept, produces Sample

- Can also, e.g., answer queries

Hypothesis H is correct if H=C

Hypothesis H is consistent with sample if

- if x+ insample then xcH
- if x- in sample then x¢H

Concepts have Representations
- size of Concept C = size of its Representation

MOVEP'10 on Automata Learning 15

Automata learning

Assume finite set = of symbols
Instance space: 2*
Concept Class: Regular languages

Representation of Concept: DFA

Sample is a (finite) set of labeled words
- w+ where wel
- w- where wel

MOVEP'10 on Automata Learning

16

Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

> alphabet of symbols input
Q states

0:Qx ~ - Q transition function

Fc Q accepting states

Assumptions:

‘Deterministic

‘Completely specified

Accepting state

MOVEP'10 on Automata Learning 17

Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

> symbols
Myhill-Nerode:
Q states Given language L
QX Z transition function
« = Q fransition functio For prefix u, define L, ={v|uve L}
Fc Q accepting states
Nerode congruence: u~u' iff L, =L,
Assumptions: Unique Minimal DFA accepts regular L
-Deterministic Q : equivalence classes [u]l.
*Completely specified ([uly,a) = [ual, fransition function
F:{[ul. | ue L} accepting states

MOVEP'10 on Automata Learning 18

Automata Learning: Frameworks

Construct DFA from sample of accepted and rejected words.
Passive learning: sample given

* Only accepted words Teacher
(positive sample)

* Accepted and rejected words e w2e w3 whs

Observing SUT/test suites [Learner] womworwT

Active learning: Learner chooses words, teacher classifies
T@STing SUT Membership query:
Teacher]

is w accepted or rejected?
w is accepted/rejected

[Learner]

MOVEP'10 on Automata Learning 19

Mealy Machines

Finite State Machines w. input & output
I input symbols input

O output symbols @ outpbut
Q states a/1

0:Qx I - Q transition function
L Qx I — O output function

*Often used for protocol modeling, for
protocol testing techniques,

b/1

Assumptions:
‘Deterministic

‘Completely specified

MOVEP'10 on Automata Learning 20

Passive Learning:

Construct DFA from sample of accepted and rejected words.

Which DFA?

The most succinct onel Teacher
- which conforms to sample,
- and has fewest states -

1+ w2+ w3+ wé+
Learner wh- wb- w7-

Finding smallest DFA is NP-hard [Gold 78]
Can be found by constraint solving (Biermann's algorithm)

MOVEP'10 on Automata Learning

21

Biermann's Algorithm

Is there a conformant DFA with n states?
Encode this as a CSP problem

Map each prefix u in tree to G/ \@
some state g, € {1 .. n}
a b

Subject to constraints:
- q,#q, if uaccepted, v rejected

- if ua va are prefixes, then
qu = Gy implies gy, = gy g Y &)

Try example forn = 3 g

MOVEP'10 on Automata Learning

22

Biermann's Algorithm

Is there a conformant DFA with n states?
Encode this as a CSP problem

Map each prefix u in tree to (/ \@
some state g, € {1 .. n}
a b

Subject to constraints:
- q,#q, if uaccepted, v rejected

- if ua va are prefixes, then
qu = Gy implies gy, = gy g Y &1@

Try example forn = 3 g

MOVEP'10 on Automata Learning

23

Biermann's Algorithm

Is there a conformant DFA with n states?

Encode this as a CSP problem
Map each prefix u in tree to
some state g, € {1 .. n}

Subject to constraints:
- q,#q, if uaccepted, v rejected
- if ua va are prefixes, then

q, = q, implies q,, = q,,

Try example forn = 3

Check

Acceptedia b aaa aabb bba
Rejected: A aa aab

MOVEP'10 on Automata Learning

24

Discussion

* Problem w. Biermanns algorithm: Exponential

* Q: Is there a setting to learn automata
polynomially in some way?

By Gold's result, we cannot hope to learn minimal
DFA from arbitrary sample.

MOVEP'10 on Automata Learning

25

TIdentification in the Limit

b [Teacher]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A-
|

Enumeration of X* 45 ab

QZ

MOVEP'10 on Automata Learning

{ Learner J

26

TIdentification in the Limit

b [Teacher]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A-
\)

b—
IS
)

MOVEP'10 on Automata Learning

{ Learner J

27

] TIdentification in the Limit

b [Teacher]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A- [Learner]

» Assume Teacher incrementally enumerates
all words (classified) in Z*

« After each word, Learner can use previous
words to form hypothesis H

Learner identifies L in the limit,
if H converges to correct hypothesis after
finitely many words
Still, (exponentially) much data may be needed

MOVEP'10 on Automata Learning 28

Efficient Identification in the Limit

[Teacher]ﬁ .. aabb+ aab- aaa+ aa- b+ a+ A- { Learner]

Concept Class is efficiently identifiable in the limit if
Jpolynomials p,q, s.t. for any concept C in concept class
 Learner can produce H in time O(p(|seen sample|))

« Exists sample S of size O(q(|C|)) s.t. Learner
produces correct H whenever seen sample contains S

S called "characteristic sample” for C
* S can depend on Learner

MOVEP'10 on Automata Learning 29

Observations

if Concept class is efficiently identifiable in the limit,
then

« Learner needs polynomial time to produce
hypothesis

« Concepts characterized by polynomial-size
characteristic sets

With “helpful” Teacher, the Learner needs only
polynomially much data to infer C

« With "unhelpful” Teacher, the Learner may need a
lot of data to infer C

e Learner should work well for characteristic sets,

should make "reasonable” hypotheses otherwise.
MOVEP'10 on Automata Learning 30

Characteristic Samples

A characteristic sample S for C should uniquely
characterize C in the following sense:

Learner should produce hypothesis C from any sample
that contains S and is consistent with C

Implies that if

» S s characteristic sample for C and
« S'is characteristic sample for C
then either

e Cisinconsistent with S' or

e C(C isinconsistent with S

¢ (otherwise what to do with S U S’ ?)

MOVEP'10 on Automata Learning 31

Characteristic Samples for DFAs

A characteristic sample for L should identify its DFA.
This can be done by
« Demonstrating that there are n states
« Each state represented by access string u
u represents 6(qg,u)
* For each state g and symbol g,
uniquely identify &(q,a)

MOVEP'10 on Automata Learning 32

Separating Sequences

A separating sequence for g and g is a suffix v
such that

d(q,v) is accepting and 6(q',v) is rejecting

(or vice versa)

1 2 : A
1 3 : b (nhota)
2 3 A

MOVEP'10 on Automata Learning

Separating Sequences

A separating sequence for g and q' is a suffix v
such that
d(q,v) is accepting and 6(q',v) is rejecting
(or vice versa)
A separating family of DFA is a family of sets
{Z, | qis astate of DFA}
s.t. Z,nZ, contains separating sequence for q and ¢

1 b

N
> > >

b

MOVEP'10 on Automata Learning

Separating Sequences

A separating family of DFA is a family of sets
{Z, | q is a state of DFA}
s.t. Z,nZ, contains separating sequence for q and q

If all Z, are equal (to W), then W is a characterizing
set

N
> > >
o on

MOVEP'10 on Automata Learning

Separating Sequences

A separating family of DFA is a family of sets
{Z, | q is a state of DFA}
s.t. Z,nZ, contains separating sequence for q and q

If all Z, are equal (to W), then W is a characterizing
set

MOVEP'10 on Automata Learning

Characteristic Sample

_et Sp(L) be prefixes in minimal spanning tree of DFA(L)
et K(L)be{ua | ue Sp(L) ae 2}

_et Characteristic Sample be

Sp(L) u {uv | ue Sp(L)UK(lL) veZ,}

y /45\ ‘

aaa
/ aab

abb

aabb

MOVEP'10 on Autom%@Learnl ng 37

Why characteristic sample?

When forming DFA from prefix tree:
« The states {q, | ue Sp(L)} cannot be merged
« since they are separated by suffixes

« Eachstatein{q, | ue K(L)} can be merged with at
most one state in{q, | ue Sp(L)}

 Easy to construct minimal DFA from sample
« if Sp(L) is known
y a a
@) /N Eb
@ aaa
2N, b o
@ @ aabb

b
MOVEP'10 on Autom%@L earning 38

State Merging Algorithms

Traverse the prefix tree from root
For each new state
* if possible, merge it with some seen state

« Otherwise, promote it to a new state in the
resulting DFA
Red states are determined to become DFA states

Blue states (frontier) are the successors of red states,
waiting to be candidates for merging with red states.

Repeatedly
Merge blue with red if no inconsistency results
"Unmergeable” blue state becomes red

MOVEP'10 on Automata Learning 39

State Merging: Example

/K
/6\ %
!

MOVEP'10 on Automata Learning

40

State Merging: Example
o
&N
®/Nii\z)

MOVEP'10 on Automata Learning

41

State Merging: Example

S
®/NE

MOVEP'10 on Automata Learning

42

State Merging: Example
S

/D\E

MOVEP'10 on Automata Learning

43

State Merging: Example

MOVEP'10 on Automata Learning

What if we change order?

/K
/6\ %
!

MOVEP'10 on Automata Learning

45

About State Merging

Order in which blue states are considered matters.
If considered states stay within{q, | ue K(L)}

a minimal DFA will be constructed
Otherwise, "suboptimal” merges may result

Remedy: Teacher and Learner agree on a fixed technique
to construct Sp(L)

* e.g., to consider strings in lexicographic order
e RPNI algor'i‘rhm. [Oncina, Garcia]

Otherwise: use heuristics for choosing "best merge”,
* e.g., to select states with "largest” subtrees.

MOVEP'10 on Automata Learning

46

About State Merging

Time Complexity (in size of sample):

e At most a quadratic number of candidate merges
considered.

« Each merge takes linear time to check
« I.e., time complexity is polynomial.

MOVEP'10 on Automata Learning

47

Active Learning
Learner actively constructs the characteristic sample,

Membership query:
is w accepted or rejected?

Teacher

is accepted/rejected
Learner

Yes/counterexample v

Oracle

Equivalence query:
is H equivalent o A ?

MOVEP'10 on Automata Learning

48

TIdeas

Maintain candidates for
Sp(L) K(L) "%
where W is a distinguishing set
Ask membership queries for
{uv | ue Sp(L)UK(L) ve W}

If u in K(L) is separated from all prefixes in Sp(L) by
separating suffix, move u to Sp(L) and extend K(L)

For new u" in K(L) let W be large enough to separate u’
from all but (at most) one prefix in Sp(L)

MOVEP'10 on Automata Learning

49

L* Algorithm b Q
Observation table 45\ \J
s o

W

A

N s
Sp(L) 4

.

KL e 1®

MOVEP'10 on Automata Learning 50

L* Algorithm b Q
Observation table 45\ \J
s o

W

Sp(l) 4 |a -

K(L) =

MOVEP'10 on Automata Learning 51

CJS ;
L* Algorithm b Q
Observation table \GJ
W
© /e\bb

| A - O I
Sp(l) 4 |a -

KL) - aa

MOVEP'10 on Automata Learning 52

Closed - Form Hypo’rhesus Q

Observation table
wW

Sp(l) 4 |a -

b |+ Gg
kL) o [aa - '
0 @

MOVEP'10 on Automata Learning 53

Ask Equivalence Query Q

Observation table
wW

Sp(l) 4 |a -

b + Gg
a,b
aa -
Kb 7 ab - ad b = @

MOVEP'10 on Automata Learning 54

Decompose coun’rerexample Q

C(

Observation table
wW

SP(L) — a +

b +
J |aa - ,—L\ Gg o0
K(L) ab - ClClb a,b

MOVEP'10 on Automata Learning 55

Add new suffix to W Q

Observation table
wW

A b

Sp(l) 4 |a + |-

b +
J |aa - |- A
k(L) ab aa b

v

MOVEP'10 on Automata Learning 56

Not closed- Add new prefix to S (Lﬂ

<)

Observation table

W b a i
o
- T,
Sp(l) 4 |a + |-
| aa
b +
_ A
S P aab-

MOVEP'10 on Automata Learning 57

Add new extensions to K(L) Q

Observation table

W
o
- T,
Sp(l) 4 |a + |- /
| aa - |- b
b |+ |-
) |ab - |+ A
A s aab
|aab - |+ \;'’

MOVEP'10 on Automata Learning 58

A bOUT L* [Angluin]

DFA with n states can be learned using

 <n equivalence queries

* O(|Z|n? + nlogm) membership queries
* mis size of longest counterexample

Produced hypothesis is always minimal DFA which is
consistent with seen membership queries

* These are a characteristic set for hypothesis

Equivalence query idealizes (possibly) exponential search
for deviations from model

The setup with Membership and Equivalence queries makes
it possible to formulate polymial-complexity algorithm.

MOVEP'10 on Automata Learning 59

Mealy Machines

‘Finite State Machines w. input & output
I input symbols input

O output symbols @ outpbut
Q states a/1

0:Qx I - Q transition function
L Qx I — O output function

*Often used for protocol modeling, for
protocol testing techniques,

b/1

Assumptions:
‘Deterministic

‘Completely specified

MOVEP'10 on Automata Learning 60

Conformance Testing

Given MM A, construct a sample (i.e., a test suite) S such
that A is "best fit" to explain S

e Typically: A is the only MM with <|A| states, which is
consistent with S

MOVEP'10 on Automata Learning

61

W-method

Let Sp(L) be prefixes in minimal spanning tree of MM
Let K(L)be{ua | ue Sp(L) ae I}

(a,
/1 / b/1
b/1
a/0 a/l/ \;/o a/0 / \b‘/O
b/0 b/0

)

MOVEP'10 on Automata Learning 62

W-method

_et Sp(L) be prefixes in minimal spanning tree of MM
et K(L)be{ua | ue Sp(L) ae I}
et Sample be {uv | ue Sp(L)UK(L) ve W}

where W is a distinguishing set
a/1 a/

\ :> ;/“/@i\f 17 “”;7\.

MOVEP'10 on Automata Learning

Z-method

_et Sp(L) be prefixes in minimal spanning tree of MM
et K(L)be{ua | ue Sp(L) ae I}

_et Samp Iebe {uv | ue Sp(LYVK(L) veZ,}
here {Z,| q<e Sp(L)}is a separating famlly of MM

-
\ SELYS:

MOVEP'10 on Automata Learning

Learning vs. Conformance Testing

Learning: Find Concept A which is "best fit" to explain a
given sample S

Conformance Testing: Given Concept A, construct a sample
S such that A is "best fit" to explain S

For automata learning: A characteristic sample for A is
also a conformance test suite for A

MOVEP'10 on Automata Learning 65

L* vs. W-method

* A sample generated by L* is also a conformance test suite
generated by the W-method

« A conformance test suite generated by the W-method is a
characteristic sample

« A is the only MM of size < |A| which is consistent with S

Q: Can we check whether A is the only automaton of size
< |A| + k which is consistent with S

MOVEP'10 on Automata Learning

66

Vasilevski-Chow test suite

Let k =2
Test suite should allow non-minimised MM

MOVEP'10 on Automata Learning

67

Vasilevski-Chow test suite

Let k =2
Test suite should allow non-minimised MM
Must cope with anomaly

MOVEP'10 on Automata Learning

68

Resulting test suite

Let W be a characterizing set for A
VC-test suite has form
S = {uxv | ue Sp(L)UK(L) xeIk ve W}

A is only MM of size < |A| + k which is consistent with S

21| &= |

MOVEP'10 on Automata Learning

69

AdeTive MOdel CheCking [Peled Yannakakis 02]

* C :
sUT _—— | M
H oK P

\/

Conformance Testing

MOVEP'10 on Automata Learning

70

AdeTive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
H ®

Counterexample w

Check behavior on w

MOVEP'10 on Automata Learning

71

Adap‘l‘ive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
H ®

Counterexample w

Check behavior on w

rue counter
example / ERROR

MOVEP'10 on Automata Learning

72

Adap‘l‘ive MOdel CheCking [Peled Yannakakis 02]

Model Checking

SUT/L*\ —
A 0)

Counterexample w

Check behaviorlon w

False counter example
/ New counterexample
for L*

MOVEP'10 on Automata Learning

73

LearnLib: a Tool for Inferring Models

Developed at Dortmund Univ. [steffen, Raffelt, Howar,
Merten]

» Central Idea: use domain-specific knowledge to
reduce the number of queries:

- Prefix-closure

- Independence between symbols (e.g., in parallel
components)

- Symmetries

* These properties correspond to "filters” between
observation table and SUT

MOVEP'10 on Automata Learning 74

the LearnLib

algorithms approximative
equivalence queries

filters

U On Automata Learning

Whata about Extensions of Automata?

Input and output symbols parameterized by data values.
State variables remember parameters in received input

Types of parameters could be, .e..g
- Identifiers of connections, sessions, users
- Sequence numbers
- Time values

MOVEP'10 on Automata Learning 76

Timed Automata

Based on standard automata
Clocks give upper and lower

bounds on distance in time 0

between occurrences of

symbols.

Temporal properties of Timed put ; get ;
Automata (reachability, LTL, ..) x<2/ %310 /
can be model-checked x:=0 x = 0

Implemented in tools
(UPPAAL, IF/Kronos)

Timed words:

(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..

MOVEP'10 on Automata Learning 77

Event-Recording Automata

Timed Automata can not be
determinized in general

Event-Recording Automata (ERA): 0
One clock for each symbol, which
is reset on that symbol.

ERA can be determinized put ; get ;
Assump’rion: >2<geT : Xput 2 10

Inference algorithm can precisely
control and record timing of
symbols.

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..

Clocked words:

(get, [14.4,14.4]) ﬁ\ﬁg\'lE%’('):L'(l)“é‘r‘\]&lsg()er;r}él[éﬁ'egaﬁﬁ}r?g’gl}]) (get, [0.96,13.9]) .. -5

Event-Recording Automata

2 (symbols) {put, get}
L (locations) {lg I;}

lo (initial location) 0
E (edges) ¢ L x X xGuards xL

F (accepting locations) < L

put. get ;
>2<9€1' 5. Xpu* .>. 10

MOVEP'10 on Automata Learning 79

Event-Recording Automata

> (symbols) {put, get}

, Conjunctions of
L (locations) {lg I;}

interval constraints

lo (initial location) Z 0

E (edges) ¢ L x X xGuards xL

F (accepting locations) < L

Semantics f’(”* < get

Q (states) L x ROx RO 59 Xpur 2 10
qo (initial state) (l,, [0,0])

I > x R0 x R0

5: QAxI—>Q

5(<ly [0,0] < get, [14.4,14.4]) = <|; [0, 14.4]>
5(<l, [0,14.4)> < put, [2.0,14.4]) = <|, [2.0 O]

MOVEP'10 on Automata Learning 80

Non-Unique Representation

Deterministic ERAs do not have unique representations

Q a; X,=1)@b;xazl
b.Xx,22

MOVEP'10 on Automata Learning

81

Find equivalence relation # on symbols and states, s.t.

- ¥ respects accepting/non-accepting states
- q®q a=xa implies §(q,a)~d(q.a)
Learn the Quotient DFA
/= Q/x & (¥ql.lal.) = [8(q.a)].) F/=

For DERASs

Equivalence on states based on region equivalence
Assume largest constant K_ in constraints on x_
<, [%g, X P & <, [y, Yo] iff

- X, > K,and y,> K, or

integer parts of x, and y, same and X, is integer iff y, is integer
- same for x, and y,
- If X, ¢« K, and x, < K, then X, ¢ x, iff y, < vy

<a,[x, x, P& <a,ly, vy, iff forall k < K,
- X, ¢ k iff y, <k and x, > k iff y, > k

MOVEP'10 on Automata Learning

Lear'hlng DERAS by QUOTIZHTIHQ [Grinchtein , Leucker, al.]

82

Regions: From infinite to finite

Concrete State SymbOhC state (region)
(I,[2.2, 1.5]) (l. y)
Xy ¢ Xy 4
2 ST 2 -
)
1 1
> Xa - . Xq
1 2 3 / T 2 3
83 MOVEP'10 on Audmagquevatence class (i.e. a region)

~There are only many such!!

Abstraction of symbols

Concrete Symbol Abstract symbol
(a,[2.2, 15]) (a,)
Xpa X4
2 ST 2 —
)
: 1
> Xa X,
1 2 3 1 5 3

84 MOVEP'10 on Automata Learning

We need only initial regions

Concrete State Symbolic state (region)
(.) (. —)
Xp 4 Xy, 4
2 S 2 —
1 . |
.
> xCl

0 ;xa
1 2 3 / : 5 3

85 MOVEP'10 on Audmagqueivaitgnce class (i.e. a region)
~There are only many such!!

Regions preserved by ftransitions

Concrete State SymbOIIC state (r‘egion)
(I,[0.7, 01) (. —_—)

| -
1 = | ,///.

1 2 3 1 2 3

86 MOVEP'10 on Audmagquevatence class (i.e. a region)
~There are only many such!!

Simple DERAs

- DERA with “small guards”

get .
0 <Xyl 0<xgl

put. get .
’2<96‘r . Xyt 2 10

MOVEP'10 on Automata Learning 87

Modifying Setup
The following setup does not work

Membership query:
is w accepted or rejected?

Teacher

is accepted/rejected
Learner

Yes/counterexample v

Oracle

Equivalence query:
is H equivalent o A ?

MOVEP'10 on Automata Learning

88

Adding Assistant

Learner actively constructs the characteristic sample,

Membership query:
For timed word

Membership query Teacher
for abstract words
h - . ,
is accepted/rejected
Learner Assistant
Yes/counterexample v

\

_ y
Equivalence query

for quotient automata Oracle

Equivalenc
For timed autom

MOVEP'10 on Automata Learning 89

Query Complexity

Size of Region graph is roughly
O(ILI KI=l)
Number of Membership Queries is about cubic in this number

MOVEP'10 on Automata Learning

90

Single-Clock Automata pverwer et al. 09]

Consider Deterministic Timed Automata with one clock
- Still, no unique minimal representation

+ But, there is a variant of Nerode Congruence
- if we know where resets occur

Timed word:
G (get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3) ..

Clocked word:
(get, 14.4) (put, 2.0) (get, 12.96)

pLIT . 961’ .
X <2 ’ (get, 14.4) reset (put, 2.0) reset (get, 12.96) reset
- X210/ Is equivalent to
x:=0 =0 (get, 12.4) reset
but not to
(get, 12.4)

MOVEP'10 on Automata Learning 91

Sihg'Z-CIOCk Automata pverwer et al. 09]

The timed language can be formed from a finite number of
Congruence classes

Only, it must be determined when to reset?
Define canonical form by prioritizing conflicts

put . get .
X< 2 X210/
x:=0 x:=0

MOVEP'10 on Automata Learning 92

put ;

R€f|n|n9 GUGI"dS [Verwer et al. 09]

Guards can be refined by counterexamples

Guards refined from counterexamples
get @0 put @2 accepted
get @3 put @7 rejected

Determine the reason for difference by
G investigating other traces

(binary) search procedure
Finds “explaining pair”, e.g.,
get ; - get @2.2 put @4.2 accepted
- get @2.2 put @4.7 rejected

Suggests reset at get
and guard x< 2 on put transition

MOVEP'10 on Automata Learning 93

Sihg'Z-CIOCk Automata pverwer et al. 09]

Have “reasonable” canonical forms

Exist characteristic samples which are polynomial in size of
canonical form (does not depend on largest constant)
Learning can be polynomial in (Membership, Equivalence)-

query model
G Version for' mUITlple C'OCkS [Grinchtein, Jonsson]
Higher complexity
PUT25 get .
X< X210/
x:=0 x:=0

MOVEP'10 on Automata Learning 94

Applications to Realistic
Procotols

MOVEP'10 onAutomata Learning

95

S IP P I"OTO CO I [Aarts,Jonsson, Uijen]

From RFC 3261:

» SIP is an application-layer control protocol that can

- establish, modify, and terminate multimedia sessions (conferences) such
as Internet telephony calls.

- invite participants to already existing sessions, such as multicast
conferences.

MOVEP'10 on Automata Learning 96

Structure of SIP packets

Method(From;To; Contact; CallId; CSeq; Via), where
Method: type of request, either INVITE, PRACK, or ACK.
From and To: addresses of the originator and receiver
CallId: unique session identier.
Cseq: sequence humber that orders transactions in a session.
IGNORE THE BELOW
Contact: address where the Client wants to receive input
Via: transport path for the transaction.

MOVEP'10 on Automata Learning 97

part of SIP Server

Variables: From, Curld, CurSegq
Constants: Me
INVITE(from,to,cid,cseq) [to == Me}/

From = from . Curld = cid; CurSegq = cseq,
100(From,to,CurId,CurSeq)

PRACK(from, to, cid, cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseq == CurSeg+1] / 200

om,to,Curld CurSeg+l)

ACK(from,to,cid,cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseqg == CurSeq] / €

MOVEP'10 on Automata Learning

98

Finding an Abstraction

Abstraction of Concrete Message FPRACK(558,1)
depends on internal state of SUT
previous history

Assistant must maintain relevant parts of history:

e.g., local copies of Curid, CurSeg

MOVEP'10 on Automata Learning

99

Adapting to Automata Learning

Learner

Assistant

V o

N

1

v

MOVEP'10 on Automata Learning

SIP
(SUT)

100

Adapting to Automata Learning

INVITE(SSS, 1) STP

Learner Assistant S
(SUT)

\ 4

N

"~ 100(558,2)

MOVEP'10 on Automata Learning 101

Adapting to Automata Learning

Learner

INVITE(first, first)

&
~

.

100(first, next)

Assistant

INVITE(558, 1)

N

"~ 100(558,2)

MOVEP'10 on Automata Learning

SIP

(SUT)

102

Adapting to Automata Learning

Learner INVITE(first, first) Assistant INVITE(SS8, 1) . SIP
g (SUT)
auxiliary
variables:
< Curld = ..
100(first, next) CurSeq = ... | 100(558, 2)

MOVEP'10 on Automata Learning 103

Abstraction: Formal definition

Possibly Infinite State Mealy Machine

I input symbols .

O output symbols nput

Q states @ output
do initial state a/1 /FJ

5 Qx I —>Q transition function /0 b/1

L Qx I — O output function

MOVEP'10 on Automata Learning 104

Abstraction: Formal definition

Possibly Infinite State Mealy Machine

I input symbols
O output symbols
Q states

do initial state

0:Qx I - Q transition function
L Qx I — O output function

Abstraction

IA abstract input symbols
OA abstract output symbols
R states

o initial state

oR: R x (IuO) » R update
or» Rx I — I input abstraction

0o Rx O - O* output abstraction

MOVEP'10 on Automata Learning 105

Abstraction: Formal definition

Possibly Infinite State Mealy Machine ~ Abstraction

I,0 symbols IA OA abstract symbols
Q.9 states , initial state R,rg states , initial state
0:Qx I > Q transition function oR: R x (IuO) » R update

L Qx I — O output function or» Rx I — I* input abstraction

0o Rx O - O* output abstraction

MOVEP'10 on Automata Learning 106

Abstraction: Formal definition

Possibly Infinite State Mealy Machine Abstraction
I,0 symbols IA OA abstract symbols
Q.9 states , initial state R,rg states , initial state
0:Qx I - Q transition function R R x (IuO) » R update
L Qx I — O output function or Rx I — IA input abstraction

0o Rx O — O* output abstraction

Abstracted Mealy Machine

I , OA abstract symbols In general Nondeterministic

Q x R, <qg.ry> states , initial state

04 Qx Rx I - Q x R ftransition furycn:/
SAqr>,a?) = {< 8(q,0a),®r,a)> oy (r,a)=a*}

MiQx Rx IA — OA output function:

A AY = R - qA
MG o) = L0 O i Alomiaa ki~

Abstraction: Formal definition

Abstracted Mealy Machine
I4 ,0A abstract symbols
Q x R, <qg,ry> states , initial state
0% Q x Rx I - Q x R transition function:
8A(«qr>, a*) = {« 8(q,0a),8%(r ,a) > | oy (r,a)=a*}
MiQx Rx I - OA output function:
M(<qr>, a*) = {ag (8R(r,a) , A (q,a)) lor(r,a)=a*}

Exists equivalence # on Q xR s.t.
<q,r> 2 <q'r> and og(r,a) = og(r',a’) implies
- <9J (q ,a),R(r,a)> =& <9 (q' ,a), ok(r', a’) »
= oo (O%(r,a),A(q,a)) = ag(BR(r',a),Ar(q,a))

MOVEP'10 on Automata Learning 108

Modified Criterion

Exists equivalence # on Q xR s.t.

+ <q,r>®<qr> and og(r,a) = og(r',a’) implies
- <8(q,a),R(r,a)> = <d&(q,d),dR(r', a)>
- 0o (8%(r,a),A(q,a)) = oo (B%(r', a),A(q,a))

Can happen, e.g., if Q can be written L x R, and
if 6 (<l,r>,a)= «I'r'> then
- r'=08R(r,a)
- |I' depends only on ox(r, a)
if L (<l,r>,a)= b then

- 0p (BR(r,a),b) depends only on oy(r,a)

MOVEP'10 on Automata Learning 109

Mapping parameters of input messages

first next last
cid Curld = L and
Method = INVITE <otherwise>
or cid = Curld
cseq CurSeq = 1 and cseq = CurSeq+l
Method = INVITE <otherwise>

or cseq = CurSeq

Maintaining auxiliary variables

first last next
Curld .= cid <unchanged>
CurId .= cseq <unchanged> <unchanged>

MOVEP'10 on Automata Learning 110

Inference by Abstraction

Learner | INVITE(First. 7irst) psgistant | SIP
g (SUT)
auxiliary
variables:
B Curld = 1
) CurSeqg = 1 |

MOVEP'10 on Automata Learning 111

Inference by Abstraction

Learner | INVITE(First. 7irst) psgistant | SIP
g (SUT)
auxiliary
variables:
J Curld = 558
) CurSeqg = 1 |

MOVEP'10 on Automata Learning 112

Inference by Abstraction

Learner INVITE(first, first) Assistant INVITE(S58, 1) . SIP
g (SUT)
auxiliary
variables:
J Curld = 558
) CurSeqg = 1 |

MOVEP'10 on Automata Learning 113

Inference by Abstraction

Learner INVITE(first, first) Assistant INVITE(SS8, 1) STP
! (SUT)
auxiliary
variables:
_ Curld = 558
curseq =1 |\ 100558, 2)

MOVEP'10 on Automata Learning 114

Learner

Inference by Abstraction

MOVEP'10 on Automata Learning

INVITE(first, f/r'sf{ Assistant INVITE(SS8, 1) .
auxiliary
variables:
B Curlid = 558
100(first, next) CurSeq =1 | 100(558, 2)

SIP

(SUT)

115

Learner

Abstraction Mappings

Input-abstr

INVITE(first, firgt)

_/ rd

curld = 1L

L/

&

pd

100(first,next) \|CurSeqg =L)~ 1 50mes 2)

SN~

MOVEP'10 on Automata Learning

SIP

(SUT)

116

Learner

Abstraction Mappings

INVITE(first, f/'r'sf{ Assistant | PNVITE(558,1) N
auxiliary
B Curld =5
100(first,next) \ |Curseq =

100(558,2)

Output-abstr

MOVEP'10 on Automata Learning

SIP
(SUT)

117

Model inferred by Learner (part)

INVITE(first, first)200(first, first)

PRACK(¥irst,next)/200(first next)

ACK(first, first) €

MOVEP'10 on Automata Learning 118

What the SUT must have done:

Variables: Curld, CurSeg

INVITE(cid,cseq) [Curld == CurSeq == L}/
Curld = cid, CurSeg = cseg;
100(CurId CurSeq)

PRACK(cid,cseqg) [cid == CurId
/\ cseg == CurSeg+1] / 200(Curld CurSegs-

ACK(cid,cseq) [cid == CurId
/\ cseq == CurSeq] / €

MOVEP'10 on Automata Learning 119

Experiments

* Learner: the LearnLib tool (developed at TU Dortmund)
- Efficient implementation of L*
- Several equivalence oracles, e.g., controllable-size random test suite.
+ SUT: ns-2 protocol simulator
- Provides implementations of many standard protocols
- Rather convenient C++ interface (no packet analyzer necessary)

» Assistant
- Bridges asynchronous interface of LearnLib w. synchronous
interface of ns-2
- Implements instantiation of input symbols, and abstraction of
output symbols

MOVEP'10 on Automata Learning 120

Learning SIP in ns-2

» Inference: about 1 thousand membership queries
one equivalence query

- Model w. 10 locations and 70 transitions

* ns-2 implementation does not check incoming cseq
parameter, just returns ift.

MOVEP'10 on Automata Learning 121

Resulting Model

Fig. 3. Full 5IP model

MOVEP'10 on Automata Learning 122

Transport Control Protocol (TCP)

* Only connection establishment and termination

+ SUT is ns-2 implementation of TCP

- Consider 2 sequence humber parameters
- Similar type of abstraction

MOVEP'10 on Automata Learning 123

TCP

- Model of behavior of TCP in ns-2

* Only transitions with "accepted” values of input
parameters are shown.

* Values of parameters not displayed

N + AC EYN +ACK e T s I |
N - Pkl o, SYN + ACK je
A il i —_—
ACKfE e\ FIN + ACK fAC —— \ - - .
. _F \ e —" v et Tosrne N
: A 4 A Ve - — c/FIN +AC B g | f]
SYN/SYN +ACK /N — - S ACK): FIN 4 pokje J
{ ——— par Py y— e ‘ s — d 4
L — FIN + ACK/ACK _______— — N A y— —— _.(@\/
— - ALK - —

=
T— ACK =z e

MOVEP'10 on Automata Learning 124

Conclusions

Basic Principles of Automata Learning for Finite-
State systems understood

Learning and Conformance Testing:
- Two sides of the same coin.

* Learning for extended automata models largely
unexplored

MOVEP'10 on Automata Learning 125

Some Future work

Techniques for handling common forms of data
Dynamically refining abstractions

_earning nondeterministic models

_earning timed models in practice

_earning under assumptions on module usage
Efficient search for counterexamples
Efficient construction of test harnesses

Some references can be found at
http://leo.cs.tu-dortmund.de:8100/

MOVEP'10 on Automata Learning 126

