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Outline

• Motivation
• Automata LearningAutomata Learning
• Conformance Testing, Model Checking
• Extensions to richer Automata Models• Extensions to richer Automata Models
• Applications in Protocol Model Generation
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Modeling in System Development

Requirements
Verification/Model Checking

Model
Design

C f T ti

I l t ti

Code Generation
Conformance Testing

Implementation
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Model BasedTest GenerationModel BasedTest Generation
Model:
What the system should do

T t

y

Test case 
generator

Test Suite
Test Objective:
What should be tested?

Well-Developed Tools:
•TGV, TorX, Gotcha, …
•Conformic Qtronic, …

Implementation
Under Test

Conformic Qtronic, …
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WTP

6MOVEP '10  on Automata Learning 
...



Modeling Gap

• Typically, models are not available

• Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing          
[A Hartman][A. Hartman]

Wh t t d if th is d l?• What to do if there is no model?
(the norm in practice)
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Supporting Model GenerationSupporting Model Generation
Model:
What the system is doing

M d l

y g

Model 
Generation

T t D iTest Driver
Logs of Test Execution

Implementation
Under Test
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How to support generation of models?

• Model Behavior of existing implementation
– By observations gained during extensive testing

• Potential Applications:
R ssi n t stin– Regression testing

– Migrating from manual to model-based testing
– Modeling environment of SUT, librariesModeling environment of SUT, libraries

• Problem: Constructing State Machines fromProblem  Constructing State Machines from 
traces/executions/words
– Has been studied in Automata Learning
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Simplest form of Automata Learning

• From sample of words
• find simple(st) state machine that explains them
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Requirements Capture

• Generate State Machine Specification from set of 
allowed (and disallowed) scenarios:

put(1) put(1) / coffee
put(1) / tee

Instances:
• Play engine [Harel,Marelly]put(1) / tee

put(2) /coffee
put(1) put (1) wait(10) / money_back

• Smyle [Bollig,Katoen,Kern,Leucker]

put(1) t(1)

put(2)

l1l0
put(1)

l1
put(1)

tee

ff

l1
wait(10)

coffee
money_back 11MOVEP '10  on Automata Learning 
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Compositional Verification[Giannakopoulou,Pasareanu et al]

Complex Model Checking Problem:Complex Model Checking Problem:

E M φ

If 
Checking E || M  |=   φ too complex:
Fi d bst ti A f E s t :

Building A using Learning
ASSUME:  

Find abstraction A of E, s.t.:

E   refines   A
A || M |

w  || M  |=   φ   
can be checked for single behavior w

Check w || M |= φ for many w,A || M  |=   φ
---------------
E || M  |=   φ

Check      w  || M  |    φ     for many w,
Construct    A  from these checks
Check whether   A   satisfies premises
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Specification Mining[Ammons,Bodik,Larus]

API:

M
bind
listen bind

Maccept
close listen

read

Problem: Find restrictions on how API 
calls may be ordered

Assume we have well-tested programs 

accept

writem p g m
that use the API

Analyze executions of such programs.
Form an Automaton that summarize 

close
write

these executions.
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Learning
( ll f )Instance Space (usually infinite)

16

3

12
985782

64

Hypothesis H

3
51

18
7

19 17
66

999975352

64

31
97 31

C n pt CConcept C LearnerTeacher 51+  18- 64- 3+  7+

S l
From Concept Class

Sample
p
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Some Terminology
Given an Instance space XGiven an Instance space X
• Concept is a subset of X
• Concept Class is a class of Concepts
• Sample is a (finite) set of labeled examples

– x+   where  x∈C
– x- where  x∉C

• Learner produces Hypothesis (in Concept Class) from Sample
• Teacher knows Concept, produces Sample

– Can also e g answer queries– Can also, e.g., answer queries
• Hypothesis H is correct if H = C
• Hypothesis H is consistent with sample if 

if i l h H– if x+  in sample then  x∈H
– if x- in sample then  x∉H

• Concepts have Representations
size of Concept C = size of its Representation– size of Concept  C =  size of its Representation    
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Automata learning
• Assume finite set Σ of symbols• Assume finite set Σ of symbols 
• Instance space:  Σ*
• Concept Class: Regular languages
• Representation of Concept: DFA
• Sample is a (finite) set of labeled words

w+ where w∈L– w+   where  w∈L
– w- where  w∉L
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Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

Σ alphabet of symbols input 

Q states 

δ Q Σ Q t iti f ti

q0

a
δ: Q х Σ → Q   transition function

F ⊆ Q              accepting states
b

b b

a

Assumptions:
q2

q1

b

a

b

•Deterministic

•Completely specified

a

Accepting state
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Deterministic Finite Automata (DFA)

Finite State Machines accepting sequences of input symbols

Σ symbols

Q states 

δ Q Σ Q t iti f ti

Myhill-Nerode:

Given language  L
δ: Q х Σ → Q   transition function

F ⊆ Q              accepting states
For prefix u , define Lu = {v | uv ∈ L}

Nerode congruence:  u ≈ u’  iff Lu = Lu’

Assumptions: Unique Minimal DFA accepts regular L

•Deterministic

•Completely specified

Q :    equivalence classes  [u]≈
δ ([u]≈ ,a)  =  [ua]≈ transition function

F : {[u]≈ | u ∈ L} accepting states
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Automata Learning: Frameworks
Construct DFA from sample of accepted and rejected wordsConstruct DFA from sample of accepted and rejected words.
Passive learning: sample given

• Only accepted words Teacher
(positive sample)

• Accepted and rejected words
Observing SUT/test suites Learner

Teacher

w1+ w2+ w3+ w4+
w5- w6- w7-g

Active learning: Learner chooses words, teacher classifies
Testing SUT M b hTesting SUT

Teacher

Membership query:
is w accepted or rejected?

Learner
w is accepted/rejected
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Mealy Machines

input 

Finite State Machines w. input & output

I input symbols

q0

a/1

output O output symbols

Q states

δ Q I Q t iti f ti b/1

b/0 b/0

a/0
δ: Q х I → Q   transition function

λ: Q х I → O output function

•Often used for protocol modeling, for 

q2
q1

b/0

a/0

b/0f f p m g, f
protocol testing techniques,   

Assumptions:

D t mi isti a/0•Deterministic

•Completely specified
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Passive Learning:
Construct DFA from sample of accepted and rejected wordsConstruct DFA from sample of accepted and rejected words.
• Which DFA?
• The most succinct one! Teacher

– which conforms to sample, 
– and has fewest states

Learner

Teacher

w1+ w2+ w3+ w4+
w5- w6- w7-

• Finding smallest DFA is NP-hard [Gold 78]
• Can be found by constraint solving (Biermann’s algorithm)• Can be found by constraint solving (Biermann s algorithm) 
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Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem -

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a b

ba
+ +

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q

b

a

a

a b

-

qu = qv implies  qua = qva

Try example for n = 3

aa

b

++ -

+
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Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem 1

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a b

ba
2 2

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q

b

a

a

a b

3 1

qu = qv implies  qua = qva

Try example for n = 3

aa

b

22 1

2

23MOVEP '10  on Automata Learning 
...



Biermann’s Algorithm
Is there a conformant DFA with n states?Is there a conformant DFA with n states?

Encode this as a CSP problem
b

1

• Map each prefix u in tree to
some state qu ∈ {1 .. n}

• Subject to constraints:

a, b

a
b 2

• Subject to constraints:
– qu ≠ qv if u accepted, v rejected
– if ua va are prefixes, then

q = q implies q = q
a

3

qu = qv implies  qua = qva

Try example for n = 3
Ch kCheck
Accepted: a   b    aaa aabb bba
Rejected:  λ aa aabj
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Discussion

• Problem w. Biermanns algorithm: Exponential
• Q: Is there a setting to learn automata 

polynomially in some way?
• By Gold’s result, we cannot hope to learn minimal 

DFA f bit lDFA from arbitrary sample.
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Identification in the LimitL

… aabb+  aab- aaa+  aa- b+ a+  λ- LearnerTeacher

a, b

b
1

a, b

a,b
1

a,

a
b 2

Enumeration of Σ*

2a

3
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Identification in the LimitL

… aabb+  aab- aaa+  aa- b+ a+  λ- LearnerTeacher

a, b

b
1

a,

a
b 2

a, b

a
1

a

3

b
a 2

3

b

3
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Identification in the LimitL

… aabb+  aab- aaa+  aa- b+ a+  λ- LearnerTeacher

a, b

b
1

a,

a
b 2 • Assume Teacher incrementally enumerates 

all words (classified) in Σ*
f h

a

3 • After each word, Learner can use previous 
words to form hypothesis H

Learner identifies L in the limitLearner identifies L in the limit,
if  H converges to correct hypothesis after 

finitely many wordsf y m y
Still, (exponentially) much data may be needed
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Efficient Identification in the Limit

… aabb+  aab- aaa+  aa- b+ a+  λ- LearnerTeacher

Concept Class is efficiently identifiable in the limit if
∃polynomials  p,q,  s.t. for any concept C in concept class
• Learner can produce H in time O(p(|seen sample|))
• Exists sample S of size O(q(|C|)) s.t. Learner 

d t H h l t i Sproduces correct H whenever seen sample contains S

• S called “characteristic sample” for C• S called characteristic sample  for C
• S can depend on Learner
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Observations
if Concept class is efficiently identifiable in the limitif Concept class is efficiently identifiable in the limit, 

then

• Learner needs polynomial time to produce 
hypothesis

h d l l• Concepts characterized by polynomial-size 
characteristic sets

• With “helpful” Teacher the Learner needs only• With helpful  Teacher, the Learner needs only 
polynomially much data to infer C

• With “unhelpful” Teacher, the Learner may need a pf , m y
lot of data to infer C

• Learner should work well for characteristic sets,
should make “reasonable” hypotheses otherwise. 
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Characteristic Samples
A characteristic sample S for C should uniquelyA characteristic sample S for C should uniquely 

characterize C in the following sense:
Learner should produce hypothesis C from any sample p yp y p

that contains S and is consistent with C
Implies that if

h l f d• S is characteristic sample for C  and
• S’ is characteristic sample for C’
th iththen either
• C is inconsistent with S’ or
• C’ is inconsistent with S• C  is inconsistent with S
• (otherwise what to do with S ∪ S’ ?)
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Characteristic Samples for DFAs
A characteristic sample for L should identify its DFAA characteristic sample for L should identify its DFA.
This can be done by
• Demonstrating that there are n statesDemonstrating that there are n states

• Each state represented by access string u
u represents δ(q0,u)p (q0, )

• For each state q and symbol a,
uniquely identify δ(q,a)q y y q
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Separating Sequences
A separating sequence for q and q’ is a suffix vA separating sequence for q and q  is a suffix v
such that 

δ(q v) is accepting and δ(q’ v) is rejectingδ(q,v) is accepting and δ(q ,v) is rejecting
(or vice versa)

1   2    :   λ a, b

b
1

1   3    :   b (not a)
2   3    :   λ a

b 2

3

a

3

33MOVEP '10  on Automata Learning 
...



Separating Sequences
A separating sequence for q and q’ is a suffix vA separating sequence for q and q  is a suffix v
such that 

δ(q v) is accepting and δ(q’ v) is rejectingδ(q,v) is accepting and δ(q ,v) is rejecting
(or vice versa)

A separating family of DFA is a family of setsp g f y f f y f
{ Zq | q is a state of DFA}

s.t. Zq ∩Zq’ contains separating sequence for q and q’q q p g q q q

1 :   λ b a, b

b
1

2 :   λ
3 :   λ b a

b 2

3

a

3
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Separating Sequences
A separating family of DFA is a family of setsA separating family of DFA is a family of sets

{ Zq | q is a state of DFA}
s t Z ∩Z ’ contains separating sequence for q and q’s.t. Zq ∩Zq’ contains separating sequence for q and q

If all Zq are equal (to W), then W is a characterizing f q q ( ), g
set

1 b
a, b

b
1

1 :   λ b
2 :   λ
3 : λ b

a
b 2

33 :   λ b
a

3
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Separating Sequences
A separating family of DFA is a family of setsA separating family of DFA is a family of sets

{ Zq | q is a state of DFA}
s t Z ∩Z ’ contains separating sequence for q and q’s.t. Zq ∩Zq’ contains separating sequence for q and q

If all Zq are equal (to W), then W is a characterizing f q q ( ), g
set

W b
a, b

b
1

W  :   λ b
a

b 2

3

a

3
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Characteristic Sample
Let Sp(L) be prefixes in minimal spanning tree of DFA(L)Let Sp(L) be prefixes in minimal spanning tree of DFA(L)
Let K(L) be { ua |  u ∈ Sp(L)   a ∈ Σ }
Let Characteristic Sample beLet Characteristic Sample be

Sp(L) ∪ { uv |  u ∈ Sp(L) ∪ K(L) v ∈ Zqu }

a, b
1

a

2

1
b

Λ
a
aa
b

b

ba
2

a
b 2

3

ab
aaa
aab
abb

1
a

b
3

a
2 1

b

2

a

3 aabbb

2

2
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Why characteristic sample?
When forming DFA from prefix tree:When forming DFA from prefix tree:
• The states {qu |  u ∈ Sp(L) } cannot be merged

• since they are separated by suffixessince they are separated by suffixes
• Each state in {qu |  u ∈ K(L) } can be merged with at 

most one state in {qu |  u ∈ Sp(L) } 
• Easy to construct minimal DFA from sample

• if Sp(L) is known
ΛΛ
a
aa
b
ab

a

2

1
b

ba
2

ab
aaa
aab
abb
aabb

1
a

b
3

a
2 1

b

2 aabb
b

2

2

38MOVEP '10  on Automata Learning 
...



State Merging Algorithms
• Traverse the prefix tree from root• Traverse the prefix tree from root
• For each new state

• if possible merge it with some seen stateif possible, merge it with some seen state
• Otherwise, promote it to a new state in the 

resulting DFA
• Red states are determined to become DFA states
• Blue states (frontier) are the successors of red states, 

waiting to be candidates for merging with red states.waiting to be candidates  for merging with red states.
• Repeatedly
• Merge blue with red if no inconsistency results

“U bl ” bl t t b d• “Unmergeable” blue state becomes red
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State Merging: Example

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+
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State Merging: Example

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+
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State Merging: Example

a
-

b

b

a

+

b

a
+

b
-

a
+ -

bb

+
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State Merging: Example

a
-

b

b

a

+

b

a
+

b
-

a
+ -

bb

+
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State Merging: Example

b

a, b

b 2

1
b

a
b 2

3

a
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What if we change order?

a
-

b a

+

b

ba
+

-
b

-
a

+ -
b

b

+
b

+
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About State Merging
• Order in which blue states are considered mattersOrder in which blue states are considered matters.
• If considered states stay within {qu |  u ∈ K(L) }

a minimal DFA will be constructed
h “ b l” l• Otherwise, “suboptimal” merges may result

• Remedy: Teacher and Learner agree on a fixed technique 
to construct Sp(L)p
• e.g., to consider strings in lexicographic order
• RPNI algorithm. [Oncina, Garcia]

• Otherwise: use heuristics for choosing “best merge”• Otherwise: use heuristics for choosing best merge , 
• e.g., to select states with “largest” subtrees.
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About State Merging
• Time Complexity (in size of sample):Time Complexity (in size of sample): 

• At most a quadratic number of candidate merges 
considered.
E ch m r t k s lin r tim t ch ck• Each merge takes linear time to check

• I.e., time complexity is polynomial.
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i L iActive Learning
Learner actively constructs the characteristic sample,

Teacher

Membership query:
is w accepted or rejected?

Teacher

is cc pt d/ j ct d
Learner

w is accepted/rejected

Yes/counterexample v

Oracle

E i lEquivalence query:
is H equivalent to A ? 
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Ideas
• Maintain candidates forMaintain candidates for 

Sp(L) K(L) W
where W is a distinguishing set

k b h f• Ask membership queries for 
{ uv |  u ∈ Sp(L) ∪ K(L) v ∈ W }

• If u in  K(L) is separated from all prefixes in Sp(L) by 
separating suffix,  move u to Sp(L) and extend K(L)

• For new u’ in K(L) let W be large enough to separate u’• For new u in  K(L) let W be large enough to separate u
from all but (at most) one prefix in Sp(L) 
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1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

+

λ -
Sp(L)

a +
b +K(L)K(L) 
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1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

+

λ -
a +Sp(L)

b +K(L)K(L) 
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1
b

L* Algorithm a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L)
ab -

K(L) 

52MOVEP '10  on Automata Learning 
...



1
b

Closed - Form Hypothesis a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) -

a,b

ab -
K(L) 

a, b

+
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1
b

Ask Equivalence Query a, b

a
b 2

W
Observation table 3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) -

a,b

bab -
K(L) 

a, b

+

aab-
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1
b

Decompose counterexample a, b

a
b 2

W
Observation table

a

3

a
-

b

λ

a

+

b

ba
+

λ -
a +Sp(L)

-
b

-

b +
aa -K(L) b -

a,b

ab -
K(L) aab- a, b

+
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1
b

Add new suffix to W a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -Sp(L)

-
b

-
a

+ -
b

+

+

b + -
aa - -K(L) bab - -

K(L) aab-
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1
b

Not closed- Add new prefix to Sp(L)a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -
aa

Sp(L)
-

b
-

a
+ -

b

+

+

aa - -
b + -

K(L) bab - +
K(L) aab-
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1
b

Add new extensions to K(L) a, b

a
b 2

W
Observation table

a

3

a
-

b

λ b

a

+

b

ba
+

b

λ - +
a + -
aa

Sp(L)
-

b
-

a
+ -

b

b

+
b

+

aa - -
b + -
ab - +K(L) b

b

+

b

+

aaa + -
aab - +

K(L) aab-
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About L* [Angluin]

• DFA with n states can be learned usingDFA with n states can be learned using
• ≤n equivalence queries
• O(|Σ|n2 + n log m)    membership queries

f l l• m is size of longest counterexample
• Produced hypothesis is always minimal DFA which is 

consistent with seen membership queriesp q
• These are a characteristic set for hypothesis

• Equivalence query idealizes (possibly) exponential search 
for deviations from modelfor deviations from model

• The setup with Membership and Equivalence queries makes 
it possible to formulate polymial-complexity algorithm.
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Mealy Machines

input 

•Finite State Machines w. input & output

I input symbols

q0
output O output symbols

Q states

δ Q I Q t iti f ti
a/1

b/0

δ: Q х I → Q   transition function

λ: Q х I → O output function

•Often used for protocol modeling, for 

b/1

b/0

a/0

q2

b/0f f p m g, f
protocol testing techniques,   

Assumptions:

D t mi isti

q1

b/0

a/0•Deterministic

•Completely specified

a/0
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Conformance Testing
• Given MM A construct a sample (i e a test suite) S suchGiven MM A, construct a sample (i.e., a test suite) S such 

that A is “best fit” to explain S
• Typically: A is the only MM with ≤|A| states, which is 

consistent with Sconsistent with S

61MOVEP '10  on Automata Learning 
...



W th dW-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua |  u ∈ Sp(L)   a ∈ I }

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

q2
q1

b/0 b/0

a/0
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W th dW-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua |  u ∈ Sp(L)   a ∈ I }
Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ W }Let Sample be { uv |  u ∈ Sp(L) ∪ K(L) v ∈ W }

where W is a distinguishing set

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

b/1 a/0 a/0b/0
q2

q1

b/0 b/0
a/0 a/1b/0 b/0

a/0
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Z th dZ-method
Let Sp(L) be prefixes in minimal spanning tree of MMLet Sp(L) be prefixes in minimal spanning tree of MM
Let K(L) be { ua |  u ∈ Sp(L)   a ∈ I }
Let Sample be { uv | u ∈ Sp(L) ∪ K(L) v ∈ Z }Let Sample be { uv |  u ∈ Sp(L) ∪ K(L) v ∈ Zqu }

where {Zq |  q ∈ Sp(L) } is a separating family of MM 

a/0 b/1
q0

a/1

a/1 b/0 a/0 b/0
b/1

a/0

a/1

b/1 a/0 a/0b/0
q2

q1

b/0 b/0

a/0
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Learning vs. Conformance Testing
• Learning: Find Concept A which is “best fit” to explain aLearning: Find Concept A which is best fit  to explain a 

given sample S
• Conformance Testing: Given Concept A, construct a sample 

S such that A is “best fit” to explain SS such that A is best fit  to explain S 
• For automata learning: A characteristic sample for A is 

also a conformance test suite for A
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L* vs. W-method
• A sample generated by L* is also a conformance test suiteA sample generated by L  is also a conformance test suite 

generated by the W-method
• A conformance test suite generated by the W-method is a 

characteristic samplecharacteristic sample
• A is the only MM of size ≤ |A| which is consistent with S

Q: Can we check whether A is the only automaton of size       
≤ |A| + k which is consistent with S
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Vasilevski-Chow test suite
• Let k =2Let k =2
• Test suite should allow non-minimised MM

q0

a/1 b/0
a/1

a/0

b/1
a/0

a/1

a/0
r1

b/0
r2

b/0

q2
q1

b/0 b/0
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Vasilevski-Chow test suite
• Let k =2Let k =2
• Test suite should allow non-minimised MM
• Must cope with anomaly

q0

a/1 b/0
a/1

a/0

b/1
a/0

a/1

a/0
r1

b/0
r2

b/0 ERROR

q2
q1

b/0 b/0
b/0 ERROR
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Resulting test suite
• Let W be a characterizing set for ALet W be a characterizing set for A

• VC-test suite has form

S  = { uxv |  u ∈ Sp(L) ∪ K(L) x ∈ I≤k v ∈ W }

• A is only MM of size ≤ |A| + k which is consistent with S

Si f l O(|Σ|k +1 2 )• Size of sample:  O(|Σ|k +1 n2 ) 
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Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
OK

Conformance Testing
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Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
Counterexample w

Check behavior on w

71MOVEP '10  on Automata Learning 
...



Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

H φH φ
Counterexample w

Check behavior on w

True counter 
example  / ERROR
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Adaptive Model Checking [Peled Yannakakis 02]

SUT
L* Model Checking

SUT

A φA φ
Counterexample w

Check behavior on w

False  counter example  
/ New counterexample 
for L*for L*
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LearnLib: a Tool for Inferring Models 

• Developed at Dortmund Univ. [Steffen, Raffelt, Howar, 
Merten]

• Central Idea: use domain specific knowledge to• Central Idea: use domain-specific knowledge to 
reduce the number of queries:
– Prefix-closurePrefix closure
– Independence between symbols (e.g., in parallel 

components)
– Symmetries

• These properties correspond to “filters” between 
observation table and SUTobservation table and SUT
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Overview of the LearnLib
LearnLib

approximative 
equivalence queries

state cover (DFA)

transition cover (DFA)

filters
prefix closure (DFA)

algorithms
Angluin (automatic)

chain of filters
query strategy
DFA and Mealy

W-method (DFA)

Wp-method (DFA)

transition cover (DFA)

UIO-method (DFA)

symmetry (DFA)

I/O determinism (DFA)

independence (DFA)
DFA and Mealy

Angluin (interactive)
chains of filters

state cover (Mealy)

transition cover (Mealy)

UIO method (DFA)

UIOv-method (DFA)
convert Mealy (DFA)

prefix closure (Mealy)

independence (Mealy)

chains of filters
access internal
constraints
insert examples
and distinguishing
strings

W-method (Mealy)

Wp-method (Mealy)

( y)

UIO-method (Mealy)

symmetry (Mealy)

model checking 

g
DFA and Mealy

Others 

UIOv-method (Mealy)
observation packs
discrimination tree
...
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Whata about Extensions of Automata?

• Input and output symbols parameterized by data values.
• State variables remember parameters in received input

Types of parameters could be e g• Types of parameters could be, .e.,g
– Identifiers of connections, sessions, users
– Sequence numbers

l– Time values
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Timed Automata
• Based on standard automata
• Clocks give upper and lower 

bounds on distance in time lbounds on distance in time 
between occurrences of 
symbols.
T mp l p p ti s f Tim d

l0

t• Temporal properties of Timed 
Automata (reachability, LTL, …) 
can be model-checked

get ;
x ≥ 10 /
x := 0

put ;
x ≤ 2 /
x := 0

• Implemented in tools          
(UPPAAL, IF/Kronos) l1

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3)  …
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Event-Recording Automata
• Timed Automata can not be 

determinized in general
• Event-Recording Automata (ERA): lEvent Recording Automata (ERA)  

One clock for each symbol, which 
is reset on that symbol.
ERA n b d t mini d

l0

t• ERA can be determinized
Assumption:

Inference algorithm can precisely 

get ;
xput ≥ 10

put ;
xget ≤ 
2g p y

control and record timing of 
symbols. l1

Timed words:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3)  …

Clocked words:Clocked words:
(get, [14.4,14.4]) (put, [2.0,14.4]) (get, [14.94,12.94]) (get, [0.96,13.9]) … 
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Event-Recording Automata
( b l ) { }Σ (symbols)    {put, get}

L  (locations) {l0, l1 }

l0 (initial location) ll0 (initial location)

E  (edges)   ⊆ L х Σ х Guards x L

F  (accepting locations) ⊆ L

l0

t get ;
xput ≥ 10

put ;
xget ≤ 
2

l1
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Event-Recording Automata
( b l ) { }Σ (symbols)    {put, get}

L  (locations) {l0, l1 }

l0 (initial location) l

Conjunctions of 
interval constraints

l0 (initial location)

E  (edges)   ⊆ L х Σ х Guards x L

F  (accepting locations) ⊆ L

l0

tSemantics

Q  (states)      L х R≥0 х R≥0

(i i i l ) (l [0 0])

get ;
xput ≥ 10

put ;
xget ≤ 
2

q0 (initial state) (l0, [0,0]) 

I                     Σ х R≥0 х R≥0

δ: Q х I → Q

l1

δ:                   Q х I → Q

δ(<l0 , [0,0]> ,< get, [14.4,14.4]>) = <l1 , [0, 14.4]>

δ(<l1, [0,14.4]> ,< put, [2.0,14.4]>) = <l0 , [2.0 ,0]>
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Non-Unique Representation
• Deterministic ERAs do not have unique representations

a ; xa = 1 b ; x ≥ 1
l0

a ; xa
l1 l2

b ; xa ≥ 1

b ; xb ≥ 2
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Learning DERAs by Quotienting [Grinchtein , Leucker, al.]

• Find equivalence relation ≈ on symbols and states, s.t.
– ≈ respects accepting/non-accepting states
– q ≈ q’     a ≈ a’ implies δ(q,a) ≈ δ(q’,a’)

• Learn the Quotient DFA 
Σ / ≈ Q / ≈ δ≈ (    δ([q]≈,[a] ≈) = [δ(q,a)] ≈ )   F / ≈

For DERAsFor DERAs
• Equivalence on states based on region equivalence
• Assume largest constant Ka in constraints on xa
• <l , [xa, xb]> ≈ <l , [ya, yb]>  iff

– xa >  Ka and ya >  Ka or
integer parts of xa and ya same      and     xa is integer iff ya is integer     

– same for xb and ybb yb 
– If      xa ≤  Ka and xb ≤  Kb then       xa ≤  xb    iff ya ≤  yb 

• <a , [xa, xb]> ≈ <a , [ya, yb]>  iff for all k   ≤  Ka
k ff k d k ff k– xa ≤  k iff ya ≤  k and    xa ≥  k  iff ya ≥  k

82MOVEP '10  on Automata Learning 
...



Regions: From infinite to finite

Concrete State
(l [2 2 1 5] )

Symbolic state (region)
(l )(l, [2.2, 1.5] ) (l,                      )

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

83 An equivalence class (i.e. a region)
There are only finite many such!!

MOVEP '10  on Automata Learning 
...



Abstraction of symbols

Concrete Symbol
(a [2 2 1 5] )

Abstract symbol
(a )(a, [2.2,  1.5] ) (a,                      )

xb
xb

b

22 ∞
11

xa

1 2 3

xa

1 2 3
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We need only initial regions 

Concrete State
(l [0 7 0] )

Symbolic state (region)
(l )(l, [0.7,  0] ) (l,                      )

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

85 An equivalence class (i.e. a region)
There are only finite many such!!
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Regions preserved by transitions

Concrete State
(l [0 7 0] )

Symbolic state (region)
(l )(l, [0.7,  0] ) (l,                      )

xb
xb b

22 ∞
11

xa

1 2 3

xa

1 2 3

86 An equivalence class (i.e. a region)
There are only finite many such!!
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Simple DERAs
• DERA with ”small guards”

l0
l0 get ;

0 < xput < 1   0 < xget< 1

get ;
x ≥ 10

put ;
x t ≤

get ;
xput = 10
xget > 2

put ; get ;

get ;
xput = xget = 0

l1

xput ≥ 10xget ≤ 
2

l1

put ;
xget = 2 xput >10

l1

g
xput > 10

l1
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M dif iModifying Setup
The following setup does not work

Teacher

Membership query:
is w accepted or rejected?

Teacher

is cc pt d/ j ct d
Learner

w is accepted/rejected

Yes/counterexample v

Oracle

E i lEquivalence query:
is H equivalent to A ? 
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ddi iAdding Assistant
Learner actively constructs the characteristic sample,

T h

Membership query:
For timed word

TeacherMembership query
for abstract words

Assistant
w is accepted/rejected

Yes/counterexample v

Learner

Oracle
Equivalence query:

Y s/count r amp
Equivalence query

for quotient automata
q q y

For timed automata

89MOVEP '10  on Automata Learning 
...



Query Complexity

• Size of Region graph is roughly
O(|L| K|Σ|)

• Number of Membership Queries is about cubic in this numberNumber of Membership Queries is about cubic in this number
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Single-Clock Automata [Verwer et al. 09]

Consider Deterministic Timed Automata with one clock
• Still, no unique minimal representation
• But there is a variant of Nerode CongruenceBut, there is a variant of Nerode Congruence

– if we know where resets occur

Ti d d
l0

Timed word:
(get, 14.4) (put, 16.4) (get, 29.34) (put, 30.3)  …

Clocked word:

get ;
x ≥ 10 /

put ;
x ≤ 2 /

Clocked word:
(get, 14.4) (put, 2.0) (get, 12.96)

(get, 14.4) reset (put, 2.0) reset (get, 12.96) reset
I i l

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0

Is equivalent to
(get, 12.4) reset
but not to
(get, 12.4)

91MOVEP '10  on Automata Learning 
...

l1



Single-Clock Automata [Verwer et al. 09]

The timed language can be formed from a finite number of
Congruence classes
Only it must be determined when to reset?Only, it must be determined when to reset?
Define canonical form by prioritizing conflicts

l0

get ;
x ≥ 10 /

put ;
x ≤ 2 /

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0
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Refining Guards [Verwer et al. 09]

• Guards can be refined by counterexamples

Guards refined from counterexamples
• get @0  put @2  accepted
• get @3  put @7  rejected
Determine the reason for difference by

l0

Determine the reason for difference by 
investigating other traces

• (binary) search procedure

get ;put ;
• Finds ”explaining pair”, e.g.,

– get @2.2  put @4.2  accepted
– get @2 2 put @4 7 rejected

l1

– get @2.2  put @4.7  rejected
• Suggests reset at get  

and guard x ≤ 2 on put transition
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Single-Clock Automata [Verwer et al. 09]

Have ”reasonable” canonical forms
Exist characteristic samples which are polynomial in size of
canonical form (does not depend on largest constant)canonical form  (does not depend on largest constant)
Learning can be polynomial in (Membership,Equivalence)-

query model

Version for multiple clocks [Grinchtein,Jonsson]

Higher complexity
l0 g p y

get ;
x ≥ 10 /

put ;
x ≤ 2 /

l1

x ≥ 10 /
x := 0

x ≤ 2 /
x := 0
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Applications to RealisticApplications to Realistic 
ProcotolsProcotols
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SIP Protocol [Aarts,Jonsson, Uijen]

From RFC 3261:From RFC 3261:
• SIP is an application-layer control protocol that can

– establish, modify, and terminate multimedia sessions (conferences) such
as Internet telephony callsas Internet telephony calls.

– invite participants to already existing sessions, such as multicast
conferences.
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Structure of SIP packets
Meth d(Fr m;T ; C ntact; CallId; CSeq; Via) whereMethod(From;To; Contact; CallId; CSeq; Via), where
• Method: type of request, either INVITE, PRACK, or ACK.
• From and To: addresses of the originator and receiverFrom and To  addresses of the originator and receiver
• CallId:  unique session identier.
• Cseq: sequence number that orders transactions in a session.
IGNORE THE BELOW
• Contact: address where the Client wants to receive input
• Via: transport path for the transaction• Via: transport path for the transaction.
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part of SIP Server
Variables: From, CurId, CurSeq
C t t M

s0

INVITE(from,to,cid,cseq) [to == Me]/
From = from ; CurId = cid ; CurSeq = cseq;

100(From,to,CurId,CurSeq)

Constants: Me

0

s1

100(From,to,CurId,CurSeq)

PRACK(from to cid cseq) [from == FromPRACK(from,to,cid,cseq) [from == From 
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq+1]  / 200(From,to,CurId,CurSeq+1)

s2

ACK(from to cid cseq) [from == From

s3

ACK(from,to,cid,cseq) [from  From
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq]  /  ε
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Finding an Abstraction
• Abstraction of Concrete Message PRACK(558 1)• Abstraction of Concrete Message  PRACK(558,1)

depends on internal state of SUT
previous history

• Assistant must maintain relevant parts of history:
e.g., local copies of   CurId, CurSeq
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Adapting to Automata Learning

Learner Assistant SIP
(SUT)(SUT)
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Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(558,1)

(SUT)

100(558,2)
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Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

(SUT)

100(558,2)100(first,next)
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Adapting to Automata Learning

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id

(SUT)

CurId = …
CurSeq = … 100(558,2)100(first,next)
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Abstraction: Formal definition
P bl f l h

input 

Possibly Infinite State Mealy Machine

I input symbols

O output symbols

q0

a/1

output 
O output symbols

Q states

q0 initial state
b/1

b/0 b/0

a/0δ: Q х I → Q   transition function

λ: Q х I → O output function

q2
q1

b/0

a/0

b/0

a/0
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Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I input symbols

O output symbols

Abstraction

IA abstract input symbols

OA abstract output symbolsO output symbols

Q states

q0 initial state

O abstract output symbols

R states

r0 initial state

δ: Q х I → Q   transition function

λ: Q х I → O output function

δR: R х (I∪O) → R   update

αI: R х I → IA input abstraction

R O OA b iαO: R х O → OA output abstraction
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Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I , O symbols

Q q0 states initial state

Abstraction

IA , OA abstract symbols

R r0 states initial stateQ , q0  states , initial state

δ: Q х I → Q   transition function

λ: Q х I → O output function

R , r0 states , initial state

δR: R х (I∪O) → R   update

αI: R х I → IA input abstraction

αO: R х O → OA output abstraction

106MOVEP '10  on Automata Learning 
...



Abstraction: Formal definition
P bl f l h bPossibly Infinite State Mealy Machine

I , O symbols

Q q0 states initial state

Abstraction

IA , OA abstract symbols

R r0 states initial stateQ , q0  states , initial state

δ: Q х I → Q   transition function

λ: Q х I → O output function

R , r0 states , initial state

δR: R х (I∪O) → R   update

αI: R х I → IA input abstraction

αO: R х O → OA output abstraction

Abstracted Mealy Machine
I l N d t i i tiIA , OA abstract symbols

Q х R ,  <q0,r0>            states , initial state

δA: Q х R х IA → Q х R transition function:

In general Nondeterministic

δ : Q х R х I → Q х R transition function:

δA(<q,r> , aA) =  { <  δ (q , a),δR(r , a) > | αI (r , a) = aA }

λA: Q х R х IA → OA       output function:

λA(<q,r> , aA) =  { αO (δR(r , a) , λ (q , a)) | αI (r , a) = aA }
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Abstraction: Formal definition
Abstracted Mealy Machine

IA , OA abstract symbols

Q х R ,  <q0,r0>            states , initial state

δA: Q х R х IA → Q х R transition function:

δA(<q,r> , aA) =  { <  δ (q , a),δR(r , a) > | αI (r , a) = aA }

λA: Q х R х IA → OA       output function:λ : Q х R х I → O output function:

λA(<q,r> , aA) =  { αO (δR(r , a) , λ (q , a)) | αI (r , a) = aA }

E lExists equivalence ≈ on  Q х R s.t.
• <q,r> ≈ <q’,r’> and   αI(r, a)  = αI(r’,a’) implies 

< δ (q a) δR(r a) > ≈ < δ (q’ a’) δR(r’ a’) >– < δ (q , a), δR(r , a) >    ≈   < δ (q , a ), δR(r , a ) > 
– αO (δR(r , a) , λ (q , a))  = αO (δR(r’, a’) , λ (q’, a’))
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Modified Criterion

Exists equivalence ≈ on  Q х R s.t.
• <q,r> ≈ <q’,r’> and   αI(r, a)  = αI(r’,a’) implies 

δ ( ) δR( ) δ ( ’ ’) δR( ’ ’)– < δ (q , a), δR(r , a) >    ≈   < δ (q’ , a’), δR(r’, a’) > 
– αO (δR(r , a) , λ (q , a))  = αO (δR(r’, a’) , λ (q’, a’))

Can happen, e.g., if Q can be written L х R, and
• if  δ (<l,r> , a) =  <l’,r’> then

’ δR( )– r’ = δR(r , a) 
– l’   depends only on αI(r, a)

• if λ (<l,r> , a) = b thenif λ ( l,r , a)   b then
– αO (δR(r , a) , b )   depends only on   αI(r, a)
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M i t f i tMapping parameters of input messages
first next last

cid CurId = ⊥ and
Method = INVITE 

or cid = CurId
<otherwise>

or cid  = CurId
cseq CurSeq = ⊥ and

Method = INVITE
or cseq = CurSeq

cseq  = CurSeq+1
<otherwise>

Maintaining auxiliary variables
or cseq  = CurSeq

first last next

CurId := cid <unchanged> 

CurId := cseq <unchanged> <unchanged> 
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Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first)

auxiliary
variables:
C Id ⊥

(SUT)

CurId = ⊥
CurSeq = ⊥
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Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1
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Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1
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Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)
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Inference by Abstraction

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)100(first,next)
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Abstraction Mappings

Input-abstr

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id ⊥

(SUT)

CurId = ⊥
CurSeq = ⊥ 100(558,2)100(first,next)
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Abstraction Mappings

Learner Assistant SIP
(SUT)

INVITE(first,first) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,2)100(first,next)

Output-abstrp
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Model inferred by Learner (part)

s0 INVITE(first first)/200(first first)0

s1

INVITE(first,first)/200(first,first)

PRACK(first,next)/200(first,next)

s2

ACK(first first)/ ε

s3

ACK(first,first)/ ε
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What the SUT must have done:
Variables: CurId, CurSeq

s0

INVITE(cid,cseq) [CurId == CurSeq == ⊥]/
CurId = cid ; CurSeq = cseq;

100(CurId,CurSeq)0

s1

100(CurId,CurSeq)

PRACK(cid cseq) [cid == CurIdPRACK(cid,cseq) [cid  CurId
/\ cseq == CurSeq+1]  / 200(CurId,CurSeq+1)

s2

ACK(cid cseq) [cid == CurId

s3

ACK(cid,cseq) [cid  CurId
/\ cseq == CurSeq]  /  ε
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Experiments

• Learner: the LearnLib tool (developed at TU Dortmund)
– Efficient implementation of L*

S v r l quiv l nc r cl s c ntr ll bl siz r nd m t st suit– Several equivalence oracles, e.g., controllable-size random test suite.

• SUT: ns-2 protocol simulator
– Provides implementations of many standard protocolsProvides implementations of many standard protocols
– Rather convenient C++ interface (no packet analyzer necessary)

• Assistantss stant
– Bridges asynchronous interface of LearnLib w. synchronous 

interface of ns-2
I l i i i f i b l d b i f– Implements instantiation of input symbols, and abstraction of 
output symbols
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Learning SIP in ns-2

• Inference: about 1 thousand membership queries
one equivalence query

• Model w.  10 locations and 70 transitions
• ns-2 implementation does not check incoming cseq

parameter, just returns it.
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Resulting Model
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Transport Control Protocol (TCP)

• Only connection establishment and termination
• SUT  is ns-2 implementation of TCP
• Consider 2 sequence number parameters
• Similar type of abstraction
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TCP

• Model of behavior of TCP in ns-2
• Only transitions with “accepted” values of input 

parameters are shownparameters are shown.
• Values of parameters not displayed
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Conclusions
• Basic Principles of Automata Learning for Finite-Basic Principles of Automata Learning for Finite

State systems understood
• Learning and Conformance Testing:Learn ng and Conformance est ng

– Two sides of the same coin.
• Learning for extended automata models largely g g y

unexplored
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Some Future work
• Techniques for handling common forms of dataTechniques for handling common forms of data
• Dynamically refining abstractions
• Learning nondeterministic modelsLearning nondeterministic models
• Learning timed models in practice
• Learning under assumptions on module usage• Learning under assumptions on module usage
• Efficient search for counterexamples
• Efficient construction of test harnesses• Efficient construction of test harnesses
• Some references can be found at
http://leo cs tu dortmund de:8100/http://leo.cs.tu-dortmund.de:8100/
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