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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify imprecisions in system inputs
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When problems are undecidable deterministically

– reachability of channel systems, ...
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Illustrating examples

• Security: Crowds protocol

– analysis of probability of anonymity

• IEEE 1394 Firewire protocol

– proof that biased delay is optimal

• Systems biology

– probability that enzymes are absent within the deadline

• Software in next generation of satellites

– mission time probability (ESA project)

c© JPK 4



What is probabilistic model checking?
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Other models: probabilistic variants of (priced) timed automata, or hybrid automata
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Discrete-time Markov chain
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a DTMC D is a triple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P(s, s′) = one-step probability to jump from s to s′
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Craps
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Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, or 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps

• Come-out roll:

– 7 or 11: win
– 2, 3, or 12: loss
– else: roll again

• Next roll(s):

– 7: loss
– point: win
– else: roll again

1
9

1 1

3
8

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
8

2
9

c© JPK 10



Probability measure on DTMCs

• Events are infinite paths in the DTMC D, i.e., Ω = Paths(D)

– a path in a DTMC is just a sequence of states

• A σ-algebra on D is generated by cylinder sets of finite paths π̂:

Cyl(π̂) =
{

π ∈ Paths(D) | π̂ is a prefix of π
}

– cylinder sets serve as basis events of the smallest σ-algebra on Paths(D)

• Pr is the probability measure on the σ-algebra on Paths(D):

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 . . . sn)
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– where P(s0 s1 . . . sn) =
Q

0�i<n

P(si, si+1) and P(s0) = 1, and

– ιinit(s0) is the initial probability to start in state s0
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Reachability probabilities

• What is the probability to reach a set of states B ⊆ S in DTMC D?

• Which event does �B mean formally?

– the union of all cylinders Cyl(s0 . . . sn) where
– s0 . . . sn is an initial path fragment in D with s0, . . . , sn−1 /∈ B and sn ∈ B

Pr(�B) =
∑

s0...sn∈Pathsfin(D)∩(S\B)∗B
Pr

(
Cyl(s0 . . . sn)

)

=
∑

s0...sn∈Pathsfin(D)∩(S\B)∗B
ιinit(s0) · P(s0 . . . sn)
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Reachability probabilities in finite DTMCs

• Let Pr(s |= �B) = Prs(�B) = Prs{π ∈ Paths(s) | π |= �B}
– where Prs is the probability measure in D with single initial state s

• Let variable xs = Pr(s |= �B) for any state s

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Pre∗(B) \ B:

xs =
∑

t∈S\B

P(s, t) · xt

︸ ︷︷ ︸
reach B via t

+
∑
u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step

c© JPK 14



Unique solution
Let D be a finite DTMC with state space S partitioned into:

• S=0 = Sat(¬∃(C UB))

• S=1 a subset of {s ∈ S | Pr(s |= C UB) = 1} that contains B

• S? = S \ (S=0 ∪ S=1)

The vector
(
Pr(s |= C UB)

)
s∈S?

is the unique solution of the linear equation system:

x = Ax+b where A =
(
P(s, t)

)
s,t∈S?

and b =
(
P(s, S=1)

)
s∈S?
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Computing reachability probabilities

• The probabilities of the events C U�n B can be obtained iteratively:

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n

• where A =
(
P(s, t)

)
s,t∈C\B

and b =
(
P(s, B)

)
s∈C\B

• Then: x(n)(s) = Pr(s |= C U �nB) for s ∈ C \ B
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Example: Craps game

• Pr(start |= C U�n B)

• S=0 = { 8, 9, 10, lost }

• S=1 = {won }

• S? = { start, 4, 5, 6 }
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Example: Craps game

• start < 4 < 5 < 6
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x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n.
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Example: Craps game

x(2)
=

1

36

0
BB@

0 3 4 5

0 27 0 0

0 0 26 0

0 0 0 25

1
CCA

| {z }
A

· 1

36

0
BB@

8

3

4

5

1
CCA

| {z }
x(1)

+
1

36

0
BB@

8

3

4

5

1
CCA

| {z }
b

=

„
1

36

«2

0
BB@

338

189

248

305

1
CCA

c© JPK 19



PCTL Syntax

• For a ∈ AP, J ⊆ [0, 1] an interval with rational bounds, and natural n:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ PJ(ϕ)

ϕ ::= X Φ
∣∣ Φ1 UΦ2

∣∣ Φ1 U�n Φ2

• s0s1s2 . . . |= Φ U�n Ψ if Φ holds until Ψ holds within n steps

• s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J

abbreviate P[0,0.5](ϕ) by P�0.5(ϕ) and P]0,1](ϕ) by P>0(ϕ) and so on
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Derived operators

�Φ = true UΦ

��nΦ = true U�n Φ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��n Φ) = P[1−q,1−p[(��n ¬Φ)

operators like weak until W or release R can be derived analogously
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Example properties

• With probability � 0.92, a goal state is reached via legal ones:

P� 0.92 (¬ illegal U goal)

• . . . in maximally 137 steps: P� 0.92

(¬ illegal U� 137 goal
)

• . . . once there, remain there almost surely for the next 31 steps:

P� 0.92

(
¬ illegal U � 137

P=1(�[0,31] goal)
)
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PCTL semantics (1)

D, s |= Φ if and only if formula Φ holds in state s of DTMC D

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ}
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PCTL semantics (2)

A path in D is an infinite sequence s0 s1 s2 . . . with P(si, si+1) > 0

Semantics of path-formulas is defined as in CTL:

π |= ©Φ iff s1 |= Φ

π |= Φ UΨ iff ∃n � 0.( sn |= Ψ ∧ ∀0 � i < n. si |= Φ )

π |= Φ U�n Ψ iff ∃k � 0.( k � n ∧ sk |= Ψ∧
∀0 � i < k. si |= Φ )
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Measurability

For any PCTL path formula ϕ and state s of DTMC D
the set {π ∈ Paths(s) | π |= ϕ } is measurable
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PCTL model checking

• Given a finite DTMC D and PCTL formula Φ, how to check D |= Φ?

• Check whether state s in a DTMC satisfies a PCTL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
– check whether state s belongs to Sat(Φ)
⇒ bottom-up traversal of the parse tree of Φ (like for CTL)

• For the propositional fragment: as for CTL

• How to compute Sat(Φ) for the probabilistic operators?

c© JPK 26



Checking probabilistic reachability

• s |= PJ(Φ U�h Ψ) if and only if Pr(s |= Φ U�h Ψ) ∈ J

• Pr(s |= Φ U�h Ψ) is the least solution of: (Hansson & Jonsson, 1990)

– 1 if s |= Ψ

– for h > 0 and s |= Φ∧¬Ψ:

X
s′∈S

P(s, s′) · Pr(s′ |= Φ U�h−1 Ψ)

– 0 otherwise

• Standard reachability for P>0(Φ U�h Ψ) and P�1(Φ U�h Ψ)

– for efficiency reasons (avoiding solving system of linear equations)
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Reduction to transient analysis

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in D

• Check �=h Ψ in the obtained DTMC D′

• This is a standard transient analysis in D′:
X
s′|=Ψ

Pr
s
{π ∈ Paths(s) | σ[h] = s

′}

– compute by (P′)h·ιΨ where ιΨ is the characteristic vector of Sat(Ψ)

⇒ Matrix-vector multiplication
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Time complexity

For finite DTMC D and PCTL formula Φ, D |= Φ can be solved in time

O(
poly(|D|) · nmax · |Φ| )

where nmax = max{n | Ψ1 U�n Ψ2 occurs in Φ } with max ∅ = 1
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The qualitative fragment of PCTL

• For a ∈ AP:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ P>0(ϕ)
∣∣ P=1(ϕ)

ϕ ::= X Φ
∣∣ Φ1 UΦ2

• The probability bounds = 0 and < 1 can be derived:

P=0(ϕ) ≡ ¬P>0(ϕ) and P<1(ϕ) ≡ ¬P=1(ϕ)

• No bounded until, and only > 0, = 0, > 1 and = 1 intervals

so: P=1(�P>0(X a)) and P<1(P>0(�a) U b) are qualitative PCTL formulas
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Qualitative PCTL versus CTL

• There is no CTL-formula that is equivalent to P=1(�a)

• There is no CTL-formula that is equivalent to P>0(�a)

• There is no qualitative PCTL-formula that is equivalent to ∀�a

• There is no qualitative PCTL-formula that is equivalent to ∃�a

⇒ PCTL with ∀ϕ and ∃ϕ is more expressive than PCTL
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Time in DTMCs

• Time in a DTMC proceeds in discrete steps

• Two possible interpretations

– accurate model of (discrete) time units
∗ e.g., clock ticks in model of an embedded device

– time-abstract
∗ no information assumed about the time transitions take

• Continuous-time Markov chains (CTMCs)

– dense model of time
– transitions can occur at any (real-valued) time instant
– modelled using negative exponential distributions
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Continuous random variables

• X is a random variable (r.v., for short)

– on a sample space with probability measure Pr

– assume the set of possible values that X may take is dense

• X is continuously distributed if there exists a function f(x) such that:

Pr{X � d} =
∫ d

−∞
f(x) dx for each real number d

where f satisfies: f(x) � 0 for all x and
∫ ∞

−∞
f(x) dx = 1

– FX(d) = Pr{X � d} is the (cumulative) probability distribution function
– f(x) is the probability density function
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Negative exponential distribution

The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of Y :

FY (d) =
∫ d

0

λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• expectation E[Y ] =
R ∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[Y ] = 1
λ2

the rate λ ∈ R>0 uniquely determines an exponential distribution.
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Exponential pdf and cdf
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Why exponential distributions?

• Are adequate for many real-life phenomena

– the time until a radioactive particle decays
– the time between successive car accidents
– inter-arrival times of jobs, telephone calls in a fixed interval

• Are the continuous counterpart of geometric distribution

• Heavily used in physics, performance, and reliability analysis

• Can approximate general distributions arbitrarily closely

• Yield a maximal entropy if only the mean is known
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Memoryless property

1. For any random variable X with an exponential distribution:

Pr{X > t + d | X > t} = Pr{X > d} for any t, d ∈ R�0.

2. Any continuous distribution which is memoryless is an exponential one.

Proof of 1. : Let λ be the rate of X ’s distribution. Then we derive:

Pr{X > t + d | X > t} =
Pr{X > t+d ∩ X > t}

Pr{X > t} =
Pr{X > t+d}
Pr{X > t}

=
e−λ·(t+d)

e−λ·t = e−λ·d = Pr{X > d}.

Proof of 2. : by contradiction, using the total law of probability.
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Closure under minimum

For independent, exponentially distributed random variables X and Y with

rates λ, µ ∈ R>0, r.v. min(X, Y ) is exponentially distributed with rate λ+µ, i.e.,:

Pr{min(X, Y ) � t} = 1 − e−(λ+µ)·t for all t ∈ R�0
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{min(X, Y ) � t} = PrX,Y {(x, y) ∈ R
2
�0 | min(x, y) � t}

=

Z ∞

0

„Z ∞

0

Imin(x,y)�t(x, y) · λe
−λx · µe

−µy
dy

«
dx

=

Z t

0

Z ∞

x

λe−λx · µe−µy dy dx +

Z t

0

Z ∞

y

λe−λx · µe−µy dx dy

=

Z t

0

λe−λx · e−µx dx +

Z t

0

e−λy · µe−µy dy

=

Z t

0

λe
−(λ+µ)x

dx +

Z t

0

µe
−(λ+µ)y

dy

=

Z t

0

(λ+µ) · e
−(λ+µ)z

dz = 1 − e
−(λ+µ)t
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Winning the race with two competitors

For independent, exponentially distributed random variables

X and Y with rates λ, µ ∈ R>0, it holds:

Pr{X � Y } =
λ

λ+µ
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{X � Y } = PrX,Y {(x, y) ∈ R
2
�0 | x � y}

=

Z ∞

0

µe
−µy

„Z y

0

λe
−λx

dx

«
dy

=

Z ∞

0

µe−µy
“
1 − e−λy

”
dy

= 1 −
Z ∞

0

µe−µy·e−λy dy = 1 −
Z ∞

0

µe−(µ+λ)y dy

= 1 − µ

µ+λ
·

Z ∞

0

(µ+λ)e−(µ+λ)y dy| {z }
=1

= 1 − µ

µ+λ
=

λ

µ+λ
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Winning the race with many competitors

For independent, exponentially distributed random variables

X1, X2, . . . , Xn with rates λ1, . . . , λn ∈ R>0, it holds:

Pr{Xi = min(X1, . . . , Xn)} =
λiPn

j=1 λj
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Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S,P, r, L) where:

• S is a countable (today: finite) set of states

• P : S × S → [0, 1], a stochastic matrix

– P(s, s′) is one-step probability of going from state s to state s′

– s is called absorbing iff P(s, s) = 1

• r : S → R>0, the exit-rate function

– r(s) is the rate of exponential distribution of residence time in state s

⇒ a CTMC is a Kripke structure with random state residence times
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Continuous-time Markov chain

a CTMC (S, P, r, L) is a DTMC plus an exit-rate function r : S → R>0
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A classical (though equivalent) perspective

a CTMC is a triple (S, R, L) with R(s, s′) = P(s, s′)·r(s)
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CTMC semantics: example
• Transition s → s′ := r.v. Xs,s′ with rate R(s, s′)

• Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2
� Xs0,s1

∩ Xs0,s2
� Xs0,s3

}
=

R(s0, s2)

R(s0, s1) + R(s0, s2) + R(s0, s3)
=

R(s0, s2)

r(s0)

• Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1, Xs0,s2, Xs0,s3) � t}
=

1 − e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1 − e−r(s0)·t
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CTMC semantics

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
r(s)

·
(
1 − e−r(s)·t

)

• The probability to take some outgoing transition from s in [0, t] is:

∫ t

0

r(s)·e−r(s)·x dx = 1 − e−r(s)·t
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Enzyme-catalysed substrate conversion
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Stochastic chemical kinetics

• Types of reaction described by stochiometric equations:

E + S
k1�
k2

ES
k3−−→E + P

• N different types of molecules that randomly collide

where state X(t) = (x1, . . . , xN) with xi = # molecules of sort i

• Reaction probability within infinitesimal interval [t, t+∆):

αm(�x) · ∆ = Pr{reaction m in [t, t+∆) | X(t) = �x}
where αm(�x) = km · # possible combinations of reactant molecules in �x

• Process is a continuous-time Markov chain
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Enzyme-catalyzed substrate conversion as a CTMC
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1�
1
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e.g., (xE, xS, xC, xP )
0.001·xC−−−−−−−→ (xE + 1, xS, xC − 1, xP + 1) for xC > 0
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CTMCs are omnipresent!

• Markovian queueing networks (Kleinrock 1975)

• Stochastic Petri nets (Molloy 1977)

• Stochastic activity networks (Meyer & Sanders 1985)

• Stochastic process algebra (Herzog et al., Hillston 1993)

• Probabilistic input/output automata (Smolka et al. 1994)

• Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Time-abstract evolution of a CTMC
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On the long run
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Transient distribution of a CTMC
Let X(t) denote the state of a CTMC at time t ∈ R�0.

Probability to be in state s at time t:

ps(t) = Pr{X(t) = s }
=

∑
s′∈S

Pr{X(0) = s′ } · Pr{X(t) = s | X(0) = s′ }

Transient probability vector p(t) = (ps1(t), . . . , psk
(t)) satisfies:

p′(t) = p(t) · (R − r) given p(0)

where r is the diagonal matrix of vector r.
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A triple modular redundant system

• 3 processors and a single voter:

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

• Modelling assumptions:

– if voter fails, entire system goes down

– after voter-repair, system starts “as new”

– state = (#processors, #voters)
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Modelling a TMR system as a CTMC

3,1

0,0

0,1

2,1

1,1

ν

2λ

up3

down
δ

up2

up1up0

3λ

µ

ν
ν

µ

ν
µ

λ

• processor failure rate is λ fph;
its repair rate is µ rph

• voter failure rate is ν fph;
its repair rate is δ rph

• rate matrix: e.g., R((3, 1), (2, 1)) = 3λ

• exit rates: e.g., r((3, 1)) = 3λ+ν

• probability matrix: e.g.,

P((3, 1), (2, 1)) =
3λ

3λ+ν
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Transient probabilities

ps3,1(t) for t � 10 hours p(t) for t � 10 hours (log-scale)

λ = 0.01 fph, ν = 0.001 fph

µ = 1 rph and δ = 0.2 rph

( c© book by B.R. Haverkort)
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Steady-state distribution of a CTMC

For any finite and strongly connected CTMC it holds:

ps = lim
t→∞ ps(t) ⇔ lim

t→∞ p′s(t) = 0 ⇔ lim
t→∞ ps(t) · (R−r) = 0

Steady-state probability vector p = (ps1, . . . , psk
) satisfies:

p · (R−r) = 0 where
∑

s∈S ps = 1
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Steady-state distribution

s s3,1 s2,1 s1,1 s0,1 s0,0

p(s) 9.655·10−1 2.893·10−2 5.781·10−4 5.775·10−6 4.975·10−3

The probability of � two processors and the voter are up

once the CTMC has reached an equilibrium is 0.9655+0.02893 ≈ 0.993

λ = 0.01 fph, ν = 0.001 fph

µ = 1 rph and δ = 0.2 rph
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Computing transient probabilities

• Transient probability vector p(t) = (ps1(t), . . . , psk
(t)) satisfies:

p′(t) = p(t) · (R−r) given p(0)

• Solution using Taylor-Maclaurin expansion:

p(t) = p(0)·e(R−r)·t = p(0) ·
∞∑

i=0

((R−r)·t)i

i!

• Main problems: infinite summation + numerical instability due to

– non-sparsity of (R−r)i and presence positive and negative entries
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Uniform CTMCs

• A CTMC is uniform if r(s) = r for all s for some r ∈ R>0

• Any CTMC can be changed into a weak bisimilar uniform CTMC

• Let r ∈ R>0 such that r � maxs∈S r(s)

– 1
r is at most the shortest mean residence time in CTMC C

• Then u(r, C) = (S,P, r, L) with r(s) = r for any s, and:

P(s, s′) =
r(s)
r

·P(s, s′) if s′ = s and P(s, s) =
r(s)
r

·P(s, s)+1−r(s)
r
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Uniformization

1
1
4

3
4

3
4

1
2

1
4

2
3

1
2

1
3

6 4 6 6 6

uniformization with k = 6

3
1

all state transitions in CTMC u(r, C) occur at an average pace of r per time unit
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Computing transient probabilities

• Now: p(t) = p(0)·er·(P−I)t = p(0)·e−rt·er·t·P =
∞∑

i=0

e−r·t(r·t)i

i!︸ ︷︷ ︸
Poisson prob.

·Pi

• Summation can be truncated a priori for a given error bound ε > 0:

‚‚‚‚‚
∞X

i=0

e
−rt(rt)i

i!
·p(i) −

kεX
i=0

e
−rt(rt)i

i!
·p(i)

‚‚‚‚‚ =

‚‚‚‚‚‚
∞X

i=kε+1

e
−rt(rt)i

i!
·p(i)

‚‚‚‚‚‚

• Choose kε minimal s.t.:
∞∑

i=kε+1

e−rt(rt)
i

i!
= 1 −

kε∑
i=0

e−rt(rt)
i

i!
� ε
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Transient probabilities: example

P =
[

0 1
1 0

]
, r =

[
3
2

]
and P3 =

[
0 1
2
3

1
3

]

Let initial distribution p(0) = (1, 0), and time bound t=1.

Then:

p(0)·
∞X

i=0

e−33
i

i!
·Pi

= (1, 0)·e−3 1
0!·

»
0 1

1 0

–
+ (1, 0)·e−3 3

1!·
»

0 1
2
3

1
3

–

+ (1, 0)·e−3 9
2!·

»
0 1
2
3

1
3

–2

+ . . . . . .

≈ (0.404043, 0.595957)
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CTMC paths

• An infinite path σ in a CTMC C = (S,P, r, L) is of the form:

σ = s0
t0−−→ s1

t1−−→ s2
t2−−→ s3 . . . . . .

with si is a state in S, ti ∈ R>0 is a duration, and P(si, si+1) > 0.

• A Borel space on infinite paths exists (cylinder construction)

– reachability, timed reachability, and ω-regular properties are measurable

• A path is Zeno if
∑

i ti is converging

• Theorem: the probability of the set of Zeno paths in any CTMC is 0
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Summarizing

• Negative exponential distribution

– suitable for many practical phenomena
– nice mathematical properties

• Continuous-time Markov chains

– Kripke structures with exponential state residence times
– used in many different fields, e.g., performance, biology, . . .

• Performance measures

– transient probability vector: where is a CTMC at time t?
– steady-state probability vector: where is a CTMC on the long run?
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Content of this lecture

• Continuous Stochastic Logic

– syntax, semantics, examples

• CSL model checking

– basic algorithms and complexity

• Bisimulation

– definition, minimization algorithm, examples

• Priced continuous-time Markov chains

– motivation, definition, some properties
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Content of this lecture

⇒ Continuous Stochastic Logic

– syntax, semantics, examples

• CSL model checking

– basic algorithms and complexity

• Bisimulation

– definition, minimization algorithm, examples

• Priced continuous-time Markov chains

– motivation, definition, some properties
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Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S,P, r, L) where:

• S is a countable (today: finite) set of states

• P : S × S → [0, 1], a stochastic matrix

– P(s, s′) is one-step probability of going from state s to state s′

– s is called absorbing iff P(s, s) = 1

• r : S → R>0, the exit-rate function

– r(s) is the rate of exponential distribution of residence time in state s
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CTMC paths

• An infinite path σ in a CTMC C = (S,P, r, L) is of the form:

σ = s0
t0−−→ s1

t1−−→ s2
t2−−→ s3 . . . . . .

with si is a state in S, ti ∈ R>0 is a duration, and P(si, si+1) > 0.

• A Borel space on infinite paths exists (cylinder construction)

– reachability, timed reachability, and ω-regular properties are measurable

• Let Paths(s) denote the set of infinite path starting in state s
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Reachability probabilities

• Let C = (S,P, r, L) be a finite CTMC and G ⊆ S a set of states

• Let �G be the set of infinite paths in C reaching a state in G

• Question: what is the probability of �G when starting from s?

– what is the probability mass of all infinite paths from s that eventually hit G?

• As state residence times are not relevant for �G, this is simple
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Probabilistic reachability

• Pr(s,�G) is the least solution of the set of linear equations:

Pr(s,�G) =




1 if s ∈ G

∑
s′∈S P(s, s′) · Pr(s′, �G) otherwise

• Unique solution by pre-computing Sat(∀�G) and Sat(∃�G)

– this is a standard graph analysis (as in CTL model checking)

• This is the same as in the first lecture this morning
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Continuous stochastic logic (CSL)

• CSL equips the until-operator with a time interval:

– let interval I ⊆ R�0 with rational bounds, e.g., I = [0, 17]

– Φ UIΨ asserts that a Ψ-state can be reached via Φ-states
. . . while reaching the Ψ-state at some time t ∈ I

• CSL contains a probabilistic operator P with arguments

– a path formula, e.g., good U[0,12]bad, and
– a probability interval J ⊆ [0, 1] with rational bounds, e.g., J = [0, 1

2]

• CSL contains a long-run operator L with arguments

– a state formula, e.g., a ∧ b or P=1(�Φ), and
– a probability interval J ⊆ [0, 1] with rational bounds
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The branching-time logic CSL

• For a ∈ AP, J ⊆ [0, 1] and I ⊆ R�0 intervals with rational bounds:

Φ ::= a
∣∣ ¬Φ

∣∣ Φ∧Φ
∣∣ LJ(Φ)

∣∣ PJ(ϕ)

ϕ ::= ΦUΦ
∣∣ Φ UI Φ

• s0t0s1t1s2 . . . |= Φ UI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds

• s |= PJ(ϕ) if the probability of the set of ϕ-paths starting in s lies in J

• s |= LJ(Φ) if starting from s, the probability of being in Φ on the long run lies in J
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Derived operators

�Φ = true UΦ

��t Φ = true U�t Φ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��t Φ) = P[1−q,1−p[(��t ¬Φ)

abbreviate P[0,0.5](ϕ) by P�0.5(ϕ) and P]0,1](ϕ) by P>0(ϕ) and so on
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Timed reachability formulas

• In � 92% of the cases, a goal state is legally reached within 3.1 sec:

P� 0.92

(
legal U� 3.1 goal

)

• Almost surely stay in a legal state for at least 10 sec:

P=1

(
��10 legal

)

• Combining these two constraints:

P� 0.92

(
legal U� 3.1 P=1

(
��10 legal

))
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Long-run formulas

• The long-run probability of being in a safe state is at most 0.00001:

L�10−5 (safe)

• On the long run, with at least “five nine” likelihood almost surely a
goal state can be reached within one sec.:

L�0.99999

(
P=1(��1goal)

)

• The probability to reach a state that in the long run guarantees more
than five-nine safety exceeds 1

2:

P>0.5 (� L>0.99999(safe))
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CSL semantics

C, s |= Φ if and only if formula Φ holds in state s of CTMC C

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= LJ(Φ) iff limt→∞ Pr{σ ∈ Paths(s) | σ@t |= Φ } ∈ J

s |= PJ(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ } ∈ J

σ |= Φ UI Ψ iff ∃t ∈ I. ((∀t′ ∈ [0, t). σ@t′ |= Φ) ∧ σ@t |= Ψ)

where σ@t is the state along σ that is occupied at time t

c© JPK 12



Content of this lecture

• Continuous Stochastic Logic

– syntax, semantics, examples

⇒ CSL model checking

– basic algorithms and complexity

• Bisimulation

– definition, minimization algorithm, examples

• Priced continuous-time Markov chains

– motivation, definition, some properties

c© JPK 13



CSL model checking

• Let C be a finite CTMC and Φ a CSL formula.

• Problem: determine the states in C satisfying Φ

• Determine Sat(Φ) by a recursive descent over parse tree of Φ

• For the propositional fragment (¬,∧, a): do as for CTL

• How to check formulas of the form PJ(ϕ)?

– ϕ is an until-formula: do as for PCTL, i.e., linear equation system
– ϕ is a time-bounded until-formula: integral equation system

• How to check formulas of the form LJ(Ψ)?

– graph analysis + solving linear equation system(s)
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Model-checking the long-run operator
• For a strongly-connected CTMC:

s ∈ Sat(LJ(Φ)) iff
∑

s′∈Sat(Φ)

p(s′) ∈ J

=⇒ this boils down to a standard steady-state analysis

• For an arbitrary CTMC:

– determine the bottom strongly-connected components (BSCCs)
– for BSCC B determine the steady-state probability of a Φ-state
– compute the probability to reach BSCC B from state s

s ∈ Sat(LJ(Φ)) iff
X

B

0
B@Pr{ s |= �B } ·

X
s′∈B∩Sat(Φ)

pB(s′)

1
CA ∈ J
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

determine the bottom strongly-connected components
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff Pr{s |= �atyellow} · pyellow(magenta)

+ Pr{s |= �atblue} · pblue(magenta) > 3
4
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff Pr{s |= �atyellow} · pyellow(magenta)︸ ︷︷ ︸

= 1
+ Pr{s |= �atblue} · pblue(magenta)︸ ︷︷ ︸

=2
3

> 3
4
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff Pr{s |= �atyellow} + 2

3 Pr{s |= �atblue} > 3
4
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff Pr{s |= �atyellow} + 2

3 Pr{s |= �atblue} > 3
4

Pr{s |= �atyellow} = 1
2 + 1

2 Pr{s′ |= �atyellow}
Pr{s′ |= �atyellow} = 1

2 Pr{s |= �atyellow}

⇒ Pr{s |= �atyellow} = 1
2

∑∞
k=0

(
1
4

)k = 2
3
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff Pr{s |= �atyellow}︸ ︷︷ ︸

2
3

+ 2
3 Pr{s |= �atblue}︸ ︷︷ ︸

1
6

> 3
4
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

s |= L>3
4
(magenta) iff 2

3 + 2
3·16 > 3

4
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Verifying long-run properties: an example

1

1

6

3 1 2

3

1

Thus: s |= L>3
4
(magenta) as

2
3

+
2
3
·1
6︸ ︷︷ ︸

7
9

>
3
4
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Time-bounded reachability

• s |= PJ

(
Φ UI Ψ

)
if and only if Pr{s |= Φ UI Ψ} ∈ J

• For I = [0, t], Pr{s |= Φ U�tΨ} is the least solution of:

– 1 if s ∈ Sat(Ψ)

– if s ∈ Sat(Φ) − Sat(Ψ):

∫ t

0

∑
s′∈S

R(s, s′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s′ at time x

· Pr{s′ |= Φ U�t−x Ψ}︸ ︷︷ ︸
probability to fulfill Φ UΨ
before time t−x from s′

dx

– 0 otherwise
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Reduction to transient analysis

• For an arbitrary CTMC C and property ϕ = Φ U�t Ψ we have:

– ϕ is fulfilled once a Ψ-state is reached before t along a Φ-path
– ϕ is violated once a ¬ (Φ ∨ Ψ)-state is visited before t

• This suggests to transform the CTMC C as follows:

– make all Ψ-states and all ¬ (Φ ∨ Ψ)-states absorbing

• Theorem: s |= PJ(Φ U�t Ψ)︸ ︷︷ ︸
in C

iff s |= PJ(�=t Ψ)︸ ︷︷ ︸
in C′

• Then it follows: s |=C′ PJ(�=t Ψ) iff
∑

s′|=Ψ

ps′(t)

︸ ︷︷ ︸
transient probs in C′

∈ J
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Example: TMR with PJ((green ∨ blue)U[0,3] red)

transformation

uniformisation

recursive computation

like PCTL

bounded until
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Interval-bounded reachability

• For any path σ that fulfills Φ U[t,t′] Ψ with 0 < t � t′:

– Φ holds continuously up to time t, and
– the suffix of σ starting at time t fulfills Φ U[0,t′−t] Ψ

• Approach: divide the problem into two:

∑
s′|=Φ

pC
′
(s, s′, t)

︸ ︷︷ ︸
check �[0,t] Φ

·
∑

s′′|=Ψ

pC
′′
(s′, s′′, t′−t)

︸ ︷︷ ︸
check Φ U[0,t′−t] Ψ

with starting distribution pC
′
(t)

– where CTMC C′ equals C with all Φ-states absorbing
– and CTMC C′′ equals C with all Ψ and ¬ (Φ ∨ Ψ)-states absorbing
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Verification times

0

5
⋅1
0
5

1
⋅1
0
6

1
.5
⋅1
0
6

2
⋅1
0
6

2
.5
⋅1
0
6

101

102

103

104

Crowds protocol (DTMC)

Randomised mutex (DTMC)

Workstation cluster (CTMC)

Tandem queue (CTMC)

verification time (in ms)

state space size

command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop
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Reachability probabilities

Nondeterminism Nondeterminism
no yes

Reachability linear equation system linear programming
DTMC MDP

Timed reachability transient analysis discretisation
+ linear programming

CTMC CTMDP
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Summary of CSL model checking

• Recursive descent over the parse tree of Φ

• Long-run operator: graph analysis + linear system(s) of equations

• Time-bounded until: CTMC transformation and uniformization

• Worst case time-complexity: O(|Φ|·(|R |·r·tmax + |S |2.81))

with |Φ| the length of Φ, uniformization rate r, tmax the largest time bound in Φ

• Tools:

PRISM (symbolic), MRMC (explicit state), YMER (simulation), VESTA (simulation), . . .
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Content of this lecture

• Continuous Stochastic Logic

– syntax, semantics, examples

• CSL model checking

– basic algorithms and complexity

⇒ Bisimulation

– definition, minimization algorithm, examples

• Priced continuous-time Markov chains

– motivation, definition, some properties
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Probabilistic bisimulation

• Traditional LTL/CTL model checking: (Fisler & Vardi, 1998)

– significant reductions in state space (upto logarithmic)
– cost of bisimulation minimisation significantly exceeds model checking time

• Pros:

– fully automated and efficient abstraction technique
– enables compositional minimization

• Our interest:

does bisimulation minimization as pre-computation step
of probabilistic model checking pay off?
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Probabilistic bisimulation

• Let C = (S,P, r, L) be a CTMC and R an equivalence relation on S

• R is a probabilistic bisimulation on S if for any (s, s′) ∈ R it holds:

1. L(s) = L(s′)
2. r(s) = r(s′)
3. P(s, C) = P(s′, C) for all C ∈ S/R, where P(s, C) =

∑
u∈C P(s, u)

Note that the last two conditions together equal R(s, C) = R(s′, C).

• States s and s′ are bisimilar, denoted s ∼ s′, if:

∃ a probabilistic bisimulation R on S with (s, s′) ∈ R
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Example

for simplicity, all states have the same exit rate (= uniform CTMC)
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Quotient Markov chain
For C = (S,R, L) and probabilistic bisimulation ∼ ⊆ S × S let

C/∼ = (S′,R′, L′), the quotient of C under ∼

where

• S′ = S/∼ = { [s]∼ | s ∈ S } with [s]∼ = { s′ ∈ S | s ∼ s′ }

• R′ : S′ × S′ → [0, 1] is defined such that for each s ∈ S and C ∈ S:

R′ ([s]∼, C) = R(s, C)

• L′([s]∼) = L(s)

it follows that C ∼ C/∼
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Modelling a TMR system as a CTMC

3,1

0,0

0,1

2,1

1,1

ν

2λ

up3

down
δ

up2

up1up0

3λ

µ

ν
ν

µ

ν
µ

λ

• processor failure rate is λ fph;
its repair rate is µ rph

• voter failure rate is ν fph;
its repair rate is δ rph

• rate matrix: e.g., R((3, 1), (2, 1)) = 3λ

• exit rates: e.g., r((3, 1)) = 3λ+ν

• probability matrix: e.g.,

P((3, 1), (2, 1)) =
3λ

3λ+ν
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A bisimilar TMR model

0000

1001

0101

0011

1111 1101

1011

0111

0001

R′([s]∼m, C) = R(s, C) =
∑

s′∈C R(s, s′)
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Preservation of state probabilities

• Let C = (S,R, L) be a CTMC with initial distribution p(0)

• For any C ∈ S0/∼ we have:

p′
C
(t) =

∑
s∈C

p
s
(t) for any t � 0

• If the steady-state distribution exists, then it follows:

p′
C

= lim
t→∞ p′

C
(t) = lim

t→∞

∑
s∈C

p
s
(t) =

∑
s∈C

p
s
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Logical characterization

For any finite CTMC with states s and s′:

s ∼ s′ ⇔ (∀Φ ∈ CSL : s |= Φ if and only if s′ |= Φ)

The quotient under the coarsest bisimulation can be obtained by
partition-refinement in time-complexity O(|R|· log |S|)

c© JPK 39



Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, and 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps

• Come-out roll:

– 7 or 11: win
– 2, 3, or 12: loss
– else: roll again

• Next roll(s):

– 7: loss
– point: win
– else: roll again
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Minimizing Craps
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A first refinement
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A second refinement
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Quotient DTMC
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IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2

20 231525 1590329 50133 10627 5431 21.8 9.2

28 804837 5750873 195086 35961 24716 22.4 7.9

36 2076773 15187833 5103900 91391 77694 22.7 6.6

40 3101445 22871849 7725041 135752 127489 22.9 6.1

all verification times concern timed reachability properties
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BitTorrent-like P2P protocol

symmetry reduction
original CTMC reduced CTMC red. factor

N states ver. time states red. time ver. time states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation
original CTMC lumped CTMC red. factor

N states ver. time blocks lump time ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction
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Overview

strong weak strong weak
bisimulation bisimulation simulation simulation

∼ ≈ � �

logical CSL CSL\© safeCSL safeCSL\©
preservation

checking partition partition parametric maximal parametric maximal
equivalence refinement refinement flow problem flow problem

O(m log n) O(n3) O(m2·n) O(m2·n3)

graph
minimization O(m log n) O(n3) – –
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Content of this lecture

• Continuous Stochastic Logic

– syntax, semantics, examples

• CSL model checking

– basic algorithms and complexity

• Bisimulation

– definition, minimization algorithm, examples

⇒ Priced continuous-time Markov chains

– motivation, definition, some properties
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Power consumption in mobile ad-hoc networks

• Single battery-powered mobile phone with ad-hoc traffic

• Two types of traffic: ad-hoc traffic and ordinary calls

– offer transmission capabilities for data transfer between third parties (altruism)
– normal call traffic

• Prices are used to model power consumption

– in doze mode (20 mA), calls can neither be made nor received
– active calls are assumed to consume 200 mA
– ad-hoc traffic and call handling takes 120 mA; idle mode costs 50 mA
– total battery capacity is 750 mAh; price equals one mA
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A priced stochastic Petri net model

150 mA

50 mA

200 mA

50 mA

150 mA 150 mA

20 mA

adhoc active

adhoc idle

request

wake up

launch

call initiated

connect

call active

in
te

rr
up

t

gi
ve

up

call idle

doze

accept

call incoming

ring

to doze

reconfirm

disconnect

transition mean time rate
(in min) (per h)

accept 20 180
connect 10 360
disconnect 4 15
doze 5 12
give up 1 60
interrupt 1 60
launch 80 0.75
reconfirm 4 15
request 10 6
ring 80 0.75
wake up 16 3.75
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Required properties

• The probability to receive a call within 24 hours exceeds 0.23

• The probability to receive a call while having consumed at most 80%
power exceeds 0.99

• The probability to launch a call before consuming at most 80% power
within 24 hours – while using the phone only for ad-hoc transfer
beforehand – exceeds 0.78
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Priced continuous-time Markov chains

A CMRM is a triple (S,R, L, ρ) where:

• S is a set of states, R a rate matrix and L a labelling (as before)

• ρ : S → IR�0 is a price function

Interpretation:

• Staying t time units in state s costs ρ(s)·t
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Cumulating price

state change
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Time- and cost-bounded reachability

• In � 92% of the cases, a goal state is reached with cost at most 62:

P� 0.92 (¬ illegal U�62 goal)

• . . . . . . within 133.4 time units: P� 0.92

(¬ illegal U� 133.4
�62 goal

)

• Possible to put constraints on:

– the likelihood with which certain behaviours occur,
– the time frame in which certain events should happen, and
– the prices (or: rewards) that are allowed to be made.
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Checking time- and cost-bounded reachability

• s |= PL(Φ UI
J Ψ) if and only if Pr{s |= Φ UI

J Ψ} ∈ L

• For I = [0, t] and J = [0, r], Pr{s |= Φ U� t
� rΨ} is the least solution of:

– 1 if s |= Ψ
– if s |= Φ and s �|= Ψ:

∫
K(s)

∑
s′∈S

R(s, s′) · e−r(s)·x · Pr{s′ |= Φ U� t−x
�r−ρ(s)·x Ψ} dx

where K(s) = { x ∈ I | ρ(s) · x ∈ J } is subset of I whose price lies in J

– 0 otherwise
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Duality: model transformation

• Key concept: exploit duality of time advancing and price increase

• The dual of an MRM C with ρ(s) > 0 into MRM C∗:

R∗(s, s′) =
R(s, s′)

ρ(s)
and ρ∗(s) =

1
ρ(s)

state space S and the state-labelling L in C are unaffected

• So, accelerate state s if ρ(s) < 1 and slow it down if ρ(s) > 1
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Duality theorem

• Transform any state-formula by swapping price and time bounds:

(
Φ UI

J Ψ
) ∗ = Φ∗ UJ

I Ψ∗

• Duality theorem: s |= PL

(
Φ UI

J Ψ
)

︸ ︷︷ ︸
in C

iff s |= PL

(
Φ∗ UJ

I Ψ∗)︸ ︷︷ ︸
in C∗

⇒ Verifying UJ (in C) is identical to model-checking UJ (in C∗)
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Proof sketch

PrC∗(s |= ��c
�t G)

= (* for s �∈ G *)Z
K∗

X
s′∈S

R∗
(s, s

′
) · e

−r∗(s)·x · Pr
C∗

“
s
′ |= �

�c�x
�t�ρ∗(s)·x G

”
dx

= (* substituting y = x
ρ(s) *)Z

K

X
s′∈S

R(s, s′) · e−r(s)·y · Pr
C∗

“
s′ |= �

�c�ρ(s)·y
�t�y G

”
dy

= (* C and C∗ have same digraph, equation system has unique solution *)Z
K

X
s′∈S

R(s, s′) · e−r(s)·y · Pr
C

“
s′ |= �

�c�ρ(s)·y
�t�y G

”
dy

= (* s �∈ G *)

PrC∗
`
s |= ��t

�c G
´
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Reduction to transient rate probabilities

Consider the formula Φ U�t
�c Ψ on MRM C

• Approach: transform the MRM C as follows

– make all Ψ-states and all ¬ (Φ ∨ Ψ)-states absorbing
– equip all these absorbing states with price 0

• Theorem: s |= PJ(Φ U�t
�c Ψ)︸ ︷︷ ︸

in MRM C
iff s |= PJ(�=t

�c Ψ)︸ ︷︷ ︸
in MRM C′

• This amounts to compute the transient rate distribution in C ′

⇒ Algorithms to compute this measure are not widespread!
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A discretization approach

• Discretise both time and accumulated price as (small) d

– probability of > 1 transition in d time-units is negligible (Tijms & Veldman 2000)

• Pr(s |= �
[t,t]
�c Ψ) ≈

∑
s′|=Ψ

c/d∑
k=1

F t/d(s′, k)·d

• Initialization: F 1(s, k) = 1/d if (s, k) = (s0, ρ(s0)), and 0 otherwise

• F j+1(s, k) = F j(s, k−ρ(s))·(1−r(s)·d)︸ ︷︷ ︸
be in state s at epoch j

+
∑
s′∈S

F j(s′, k−ρ(s′))·R(s′, s)·d︸ ︷︷ ︸
be in s′ at epoch j

• Time complexity: O(|S|3 · t2 · d−2) (for all states)

c© JPK 61



Discretization
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Discretization
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Perspectives

• Linear real-time specifications (MTL, timed automata)

• Aggressive abstraction techniques

• Counterexample generation

• Continuous-time Markov decision processes

• Parametric model checking

• Infinite-state model checking

• . . . . . .
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CTMC model checking

• . . . . . . is a mature automated technique

• . . . . . . has a broad range of applications

• . . . . . . is supported by powerful software tools

• . . . . . . extendible to prices

• . . . . . . supported by aggressive abstraction

more information: www.mrmc-tool.org
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• CTMC model checking

– CSL: [Baier, Haverkort, Hermanns & Katoen, IEEE Trans. Softw. Eng., 2003]

– linear timed specifications: [Chen, Han, Katoen & Mereacre, LICS 2009]

• Bisimulation minimization

– [Derisavi, Hermanns & Sanders, IPL 2005], [Valmari & Franceschinis, TACAS 2010]

– [Katoen, Kemna, Zapreev & Jansen, TACAS 2007]

• Priced continuous-time Markov chain model checking

– [Baier, Haverkort, Hermanns & Katoen, ICALP 2000]

– [Baier, Cloth, Haverkort, Hermanns & Katoen, DSN 2005/FMSD 2010]

• CTMC abstraction

– 3-valued abstraction: [Katoen, Klink, Leucker & Wolf, CONCUR 2008]

– compositional abstraction: [Katoen, Klink and Neuhäusser, FORMATS 2009]
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