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An Infinite State System

qiniqodd qeve

x is even

x := x/2

x is odd

x := 3x + 1

Figure: Syracuse
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In this presentation, we consider counter systems:
A finite set of counter variables.
A finite control structure (a finite graph).
Labelled with actions manipulating the variable contents.

Good model:
C programs, expect system calls, heap manipulations, recursive
calls, floating point arithmetic operations...
C programs manipulating linked data structures [BBH+06].
Abstraction of communicating processes [BCR01], [BMWK09].
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The safety verification problem

Input : An initial and a final configuration.
Decide : if the final configuration is reachable from the initial one.

Some remarks:
The problem is recursively-countable : we prove the reachability
with a path.
The problem is not recursive : we prove the non-reachability with
an inductive invariant that contains the initial configuration but not
the final configuration.

The big problem:
Find out a “good” logic (expressive, decidable) to express
invariants.
Find out a way for computing an invariant in this logic.
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Grammar

FO (N,+,0,1)

Let X be a countable set of variables.

Definition (Presburger Formulas)
t := 0 | 1 | x | t1 + t2
p := t1 = t2 | > | ⊥
φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | ∃x φ | ∀x φ

with x ∈ X

Examples:
Even numbers : ∃y x = y + y
Odd numbers : ∃y x + 1 = y + y
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Term Variables

Definition
var(t) ⊆ X is the set of variables of a term t .

var(0) = ∅
var(1) = ∅
var(x) = {x}
var(t1 + t2) = var(t1) ∪ var(t2)

var(x + y) = {x , y}.
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Free Variables

Definition
var(φ) ⊆ X is the set of variables of a Presburger formula φ.

var(t1 = t2) = var(t1) ∪ var(t2)
var(>) = ∅
var(⊥) = ∅
var(¬φ) = var(φ)
var(φ1 ∨ φ2) = var(φ1) ∪ var(φ2)
var(φ1 ∧ φ2) = var(φ1) ∪ var(φ2)
var(∃x φ) = var(φ)\{x}
var(∀x φ) = var(φ)\{x}

var(x = y + y) = {x , y}

var(x = x) = {x}

var(∃y x = y + y) = {x}
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Valuations

Definition
A valuation v is a total function v : X 7→ N.
v(t) is the valuation of a term t .

v(0) = 0
v(1) = 1
v(t1 + t2) = v(t1) + v(t2)

For instance if t = 1 + (x + (x + y)) then:

v(t) = 1 + 2v(x) + v(y)
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Models

v |= φ is defined by induction.

v |= t1 = t2 iff v(t1) = v(t2)
v |= >
v 6|= ⊥
v |= ¬φ iff v 6|= φ
v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2
v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2
v |= ∃x φ iff ∃n ∈ N such that v [x 7→ n] |= φ
v |= ∀x φ iff ∀n ∈ N we have v [x 7→ n] |= φ
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Presburger Sets

Let ~x = (x1, . . . , xd ) be a vector of distinct variables.
Let v(~x) = (v(x1), . . . , v(xd )).

Definition
A set S ⊆ Nd is said to be denoted by φ(~x) where φ is a Presburger
formula with var(φ) ⊆ {x1, . . . , xd} if:

S = {v(~x) | v |= φ}

In this case S is called a Presburger set.
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Presburger Sets : Linear Constraints

{~n ∈ N2 | n1 ≤ n2} is denoted by φ(x1, x2) with:
φ = ∃y x1 + y = x2

Let α1, . . . , αd ∈ Z and β ∈ Z.
{~n ∈ Nd | α1n1 + · · ·+ αdnd ≤ β} is a Presburger set.
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Presburger Sets : Divisibility Constraints

z1 ∼m z2 if m divides z1 − z2.

{n ∈ N | n ∼2 0} is denoted by φ(x) with:
φ = ∃y x = y + y

Let α1, . . . , αd ∈ Z, β ∈ Z and m ∈ N>0.
{~n ∈ Nd | α1n1 + · · ·+ αdnd ∼m β} is a Presburger set.
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Quantifier Elimination

FO
(
N,+,0,1,≤, (∼m)m∈N>0

)
t := 0 | 1 | x | t1 + t2
p := t1 = t2 | t1 ≤ t2 | t1 ∼m t2 | > | ⊥
φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | ∃x φ | ∀x φ

Definition (Equivalence)
φ1 ≡ φ2 iff for every valuation v we have v |= φ1 iff v |= φ2.

Theorem ([Pre29])
Any Presburger formula is effectively equivalent to a quantifier-free
formula in FO

(
N,+,0,1,≤, (∼m)m∈N>0

)
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Satisfiability Problem

Definition (Satisfiability)
φ satisfiable if v |= φ for at least one valuation v

Theorem ([Ber77])
The satisfiability problem for the Presburger arithmetic is complete for
the class of problems decidable by alternating Turing machines
working in 2-EXPTIME with at most n alternations.

The satisfiability problem is decidable in 2-EXPSPACE.
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Semilinear Sets
Definition (Linear sets)
{~v0 + n1 ~v1 + · · ·+ nk ~vk | n1, . . . ,nk ∈ N}
with ~v0, . . . , ~vk ∈ Nd .

Figure: ~v0 = (1,0), ~v1 = (1,1), ~v2 = (0,2)

Definition (Semilinear sets)
Finite union of linear sets.

Theorem ([GS66])
A set is Presburger iff it is semilinear.
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Presburger Formulas vs Automata

Presburger formulas (for denoting Presburger sets):
Lack canonical representations.
Simplification procedure difficult.

Deterministic automata (for recognizing regular languages):
Unique minimal deterministic automaton.
n log(n) minimization procedure.
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Binary Decomposition

Definition
A word σ = a1 . . . ak with aj ∈ {0,1} such that:

n = a120 + · · ·+ ak2k−1
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Extension : basis

A base of decomposition r ∈ N>1
The digit alphabet Σr = {0, . . . , r − 1}

Definition (Encodings for N in basis r )
A word σ = a1 . . . ak with aj ∈ Σr such that:

n = a1r0 + · · ·+ ak r k−1
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Extension : vectors

A dimension d ∈ N.
The digit-vector alphabet Σr ,d = Σd

r

Definition (Encodings for Nd )
A word σ = ~a1 . . . ~ak with ~aj ∈ Σr ,d such that:

n = ~a1r0 + · · ·+ ~ak r k−1
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Sets Recognizable in Base r
Definition
A set S ⊆ Nd is encoded by a language L ⊆ Σ∗r ,d if S is the set of
vectors ~n ∈ Nd with at least one encoding σ ∈ L.

If L is regular, S is said to be recognizable in base r .

q0 q1

(1,1,0)

(0,0,1)

(0,0,0)
(0,1,1)
(1,0,1)

(1,1,1)
(1,0,0)
(0,1,0)

Figure: {~n ∈ N3 | n1 + n2 = n3}
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Saturated Languages
If S1,S2 are encoded by languages L1,L2
Then S1 ∪ S2 is encoded by L1 ∪ L2
But S1 ∩ S2 is not encoded by L1 ∩ L2

For instance L1 = {0} and L2 = {0.0}.
Then S1 = S2 = {0} = S1 ∩ S2
but L1 ∩ L2 = ∅.

Definition (Saturated)
L ⊆ Σ∗r ,d such that for every encodings σ1, σ2 of the same vector ~n:

σ1 ∈ L ⇐⇒ σ2 ∈ L

Lemma
Every set S ⊆ Nd is encoded by a unique saturated language
L ⊆ Σ∗r ,d .
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Saturation Procedure

Lemma
if X is encoded by L then X is encoded by the saturated language:⋃

i∈N
L · (0i)−1 · 0∗

In particular this language is regular if L is regular.

Jérôme Leroux (LaBRI) Presburger And Verification MOVEP’10 25 / 68



Boolean Operations

Let S1,S2,S be encoded by the saturated languages L1,L2,L

S1 ∪ S2 is encoded by the saturated language L1 ∪ L2
S1 ∩ S2 is encoded by the saturated language L1 ∩ L2
Nd\S is encoded by the saturated language Σ∗r ,d\L

Lemma
The class of subsets of Nd recognizable in base r is stable by union,
intersection, and complement.
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Projection

πi : Nd → Nd−1

~n 7→ (n1, . . . ,ni−1,ni+1, . . . ,nd )

Lemma
Let X ⊆ Nd encoded by L ⊆ Σ∗r ,d .
Then πi(X ) is encoded by:

{πi(a1) · · ·πi(ak ) | a1 . . . ak ∈ L}

In particular the language is regular if L is regular.
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Presburger Automata

Theorem ([Cob69], [Kla04],[DGH10])
Every Presburger set is recognizable in base r .
Moreover, the set denoted by φ(~x) can be encoded by a deterministic
automaton in 3-EXPTIME.

Efficient algorithms for:
linear constraints.
divisibility constraints.

can be found in [WB95].
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What Are The Recognizable Sets ?

r∗ = {rn | n ∈ N} is encoded by L = 0∗.1.

Thus any set in FO (N,+,0,1, r∗) is recognizable in base r .
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Valuation Function

Definition
The valuation function Vr : N 7→ r∗ is defined over any n ∈ N>0 by:
Vr (n) is the greatest integer in r∗ that divides n

{(n,Vr (n)) | n ∈ N\{0}} is encoded by:

L = (0,0)∗.
⋃
b 6=0

(b,1).Σ∗r ,2
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Characterization

Theorem ([BHMV94])
A set is recognizable in base r if and only if it is definable in
FO (N,+,0,1,Vr ).

Moreover, the set denoted by φ(~x) can be encoded by a deterministic
automaton in time:

22. . .2
n

a tower of height n.
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Sets Recognizable in Multiple Basis

Observe that if S ⊆ Nd is recognizable in basis r then it is recognizable
in basis rn for every n ∈ N>0.

Definition (Multiplicatively dependant)
r1, r2 ∈ N>1 are multiplicatively dependant if there exists n1,n2 ∈ N>0
such that rn1

1 = rn2
2

Lemma
Let r1, r2 ∈ N>1 be multiplicatively dependant basis of decomposition.
A set is recognizable in base r1 iff it is recognizable in base r2.

Theorem ([Cob69],[Sem77])
Let r1, r2 ∈ N>1 be multiplicatively independant basis of decomposition.
A set is recognizable in basis r1 and r2 iff it is Presburger.
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Why ?

Understand the complexity gap.
Extract geometrical properties.
Used the automata minimization procedure as a formula
simplification and normalization procedure.
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Ultimately Periodic Sets

Definition
A set S ⊆ N is ultimately periodic if

∃k ∃m ≥ 1 ∧ ( ∀n ≥ k ⇒ ( n ∈ S ⇔ n + m ∈ S ) )

is equivalent to >.

A set S ⊆ N is Presburger iff it is ultimately periodic (based on
quantifier elimination).
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Muchnik Criterion

Theorem ([Muc03])
Let d ∈ N and let Pd be an uninterpreted symbol of dimension d.

We can effectively compute a formula ψd in FO (N,+,0,1,Pd ) such
that the formula ψd is equivalent to > when Pd is interpreted as a set
S ⊆ Nd iff S is Presburger.
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Related Works

Presburger Synthesis:
An EXPTIME algorithm for Boolean combinations of linear
equalities [Ler03].
An EXPTIME algorithm for conjunctions of inequalities [Lat04].
An 2-EXPTIME algorithm for sets B + P∗ where B,P finite [Lug04].
A PTIME algorithm for the full Presburger arithmetic [Ler05].
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Affine Spaces
Definition (Affine spaces)

A non-empty subset A of Qd satisfying a conjunction of linear
equalities. Its direction ~A is the subset of Qn satisfying the
homogeneous conjunction.

Figure: An affine space and its direction
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Semi-Affine spaces
Definition (Semi-affine spaces[Ler04])

A finite union S =
⋃k

i=1 Ai of non-empty affine spaces Ai .
Its direction ~S =

⋃k
i=1

~Ai .

Figure: A semi-affine space and its direction
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Semi-Affine Encapsulation

Definition ([Ler04])

For any set R ⊆ Qd there exists a minimal for ⊆ semi-affine space that
contains R called the semi-affine encapsulation of R.

Theorem ([Ler05])

Directions of semi-affine encapsulations of subsets of Nd recognized
by automata are computable in PTIME.
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Boundaries

Figure: A Presburger set
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Key Idea
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Theorem ([Ler05])
We can decide in PTIME if an automaton recognizes a Presburger set
S. Moreover, in this case, we can compute in PTIME a Presburger
formula φ(~x) that denotes S.

This algorithm is implemented in TAPAS [LP09].
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Presburger Relations

Let (x1, x ′1, . . . , xd , x ′d ) be a sequence of distinct variables.
~x = (x1, . . . , xd )
~x ′ = (x ′1, . . . , x

′
d )

Definition

A relation R ⊆ Nd × Nd is said to be denoted by φ(~x , ~x ′) where φ is a
Presburger formula with var(φ) ⊆ {x1, x ′1, . . . , xd , x ′d} if:

R = {(v(~x), v(~x ′)) | v |= φ}

In this case R is called a Presburger relation.
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Presburger Counter Systems
Definition
A Presburger counter system is a tuple (Q,d ,∆) where:

Q is a finite set of control states.
∆ is a finite set of triples (q, φ,q′) where q,q′ ∈ Q and φ is a
Presburger formula satisfying var(φ) ⊆ {x1, x ′1, . . . , xd , x ′d}.

qiniqodd qeve

x ∼2 0 ∧ x ′ = x

x ′ + x ′ = x

x ∼2 1 ∧ x ′ = x

x ′ = x + (x + (x + 1))

Figure: A Presburger counter system.
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Semantics

A configuration c is a couple (q, ~n) ∈ Q × Nd .

The semantics is given by (q, ~n)
φ−→ (q′, ~n′) if

(q, φ,q′) ∈ ∆ and (~n, ~n′) ∈ Rφ where Rφ is the Presburger relation
denoted by φ(~x , ~x ′).
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The Reachability Problem

We introduce ∗−→ defined by c ∗−→ c′ if there exists:

c = c0
φ1−→ c1 · · ·

φk−→ ck = c′

In this case c′ is said to be reachable from c

With the Minsky machines:

Lemma
The reachability problem is undecidable for the class of Presburger
Counter Systems.
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Inductive Invariant

Definition

A set C ⊆ Q × Nd is called an inductive invariant if for every c
φ−→ c′

with c ∈ C, we have c′ ∈ C.

Definition
A set C ⊆ Q ×Nd is said Presburger if C =

⋃
q∈Q Nq where Nq ⊆ Nd is

Presburger for every q.
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Symbolic Computation

Semi-algorithm deciding the reachability problem c•
∗−→ c!.

Initially k = 0 and C0 = {c•}.
We repeat forever the following loop:
If c! ∈ Ck return “reachable”.
Compute:

Ck+1 = Ck ∪ {ck+1 | there exists ck
φ−→ ck+1 with ck ∈ Ck}

If Ck+1 ⊆ Ck return “unreachable”.
Otherwise increment k .

Jérôme Leroux (LaBRI) Presburger And Verification MOVEP’10 51 / 68



Acceleration Techniques
The iterative effect of cycles.

q0

q1

q2

q3

q4

q5

q6

q7

φ1

φ2

φ3

φ4 φ5

φ6

φ7

φ8

R1 · · ·R8 is a Presburger relation denoted by φ(~x , ~x ′).

In general even if R is a Presburger relation, R∗ is not a Presburger
binary relation.
We cannot even decide if it is definable in the Presburger arithmetic.
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Some Results

Let f : Zd 7→ Zd be a total linear function f (~x) = M~x + ~v . Then f ∗

is definable in FO (Z,+,0,1,≤) if and only if M∗ is finite [Boi03].
Let f : Zd 7→ Zd be a linear function partially defined over a
Presburger set. Then f ∗ is definable in FO (Z,+,0,1,≤) if M∗ is
finite [FL02].
Let φ be a conjunction of difference constraints zi − zj ≤ c with
zi ∈ {xi , x ′i } and zj ∈ {xj , x ′j }. Then φ∗ is effectively definable in
FO (Z,+,0,1,≤) [CJ98].
Let φ be a conjunction of octagonal constraints zi − zj ≤ c or
zi + zj ≤ c with zi ∈ {xi , x ′i } and zj ∈ {xj , x ′j }. Then φ∗ is effectively
definable in FO (Z,+,0,1,≤) [BGI09].
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Sometimes Approximation Is Mandatory

p q

~x ′ = ~x

~x ′ = ~x + (−1,1,0)

~x ′ = ~x + (0,0,1)

~x ′ = ~x + (2,−1,0)

Figure: A Vector Addition System With States [HP76]

Reachability set from (p, (1, 0, 0))

{p} × {~n ∈ N3 | n1 + n2 ≤ 2n3}
∪{q} × {~n ∈ N3 | n1 + 2n2 ≤ 2n3+1}
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Vector Addition Systems With States

Definition
A Vector Addition System with States (VASS) is a Presburger counter
systems with formulas φ of the form ~x ′ = ~x + ~v with ~v ∈ Zd .

Theorem ([Ler09])
If c! is not reachable from c• then there exists a Presburger Inductive
Invariant that contains c• but not c!.
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Conclusion

We have seen:
Some links between automata and Presburger arithmetic.
Applications of the Presburger arithmetic on the verification of
counter systems.

Many open problems:
Find a decision procedure for the Presburger arithmetic combining
efficiently formulas and automata.
Improve acceleration techniques to be “complete” for the VASS
reachability problem.
Find interesting classes of Presburger formulas that can be
iterated.
And many other problems based on results not presented here.
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