Programming Life

Programming Cells in the 21st Century

Medicine

- Programming bacteria to fight tumours and viruses
- Programming yeast to synthesise novel vaccines
- Programming immune cells to improve immune response

Food

- Programming bacteria to fix nitrogen for plants
- Programming plant cells to improve crop yields

Energy \& Environment

- Programming bacteria to convert CO_{2}
 from the atmosphere into fuel

Outline

- Programming DNA Circuits
- Programming Genetic Devices
- Programming the Immune System

Programming DNA Circuits

Luca Cardelli, Matthew Lakin,

Simon Youssef \& Andrew Phillips

Smaller and Smaller

Dec. 23, 1947. John Bardeen, William Shockley, Walter Brattain show the first working transistor

Sep 1958. Jack Kilby builds the first integrated circuit.

Jan 30, 2010. Intel and Micron announce 25 nm NAND flash.

Dec 24, 2009. Working transistor made of a single molecule.

Observation of molecular orbital gating. Nature, 2009; 462 (7276): 1039

The race is on for molecular scale integrated circuits.

Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology 4, 557-561 (2009).

DNA Storage

DNA in each human cell

- 3 billion base pairs
- 2 meters long, 2 nm thick
- folded into a 6 nm ball
- 750 MegaBytes

DNA in human body

- 10 trillion cells
- 133 Astronomical Units
- 7.5 OctaBytes

DNA in human population

- 20 million light years
wehi.edu.au

DNA Structure

DNA Sequence (T,A,G,C)

T-A Base Pair
Thymine-Adenine

G-C Base Pair

Guanine-Cytosine

Sequence of Base Pairs (GACT alphabet)

DNA strands

Double-stranded DNA

Single-stranded DNA has an orientation
Each strand spells a GACT sequence
The two strands have opposite orientations

DNA Aptamers

Artificially evolved DNA molecules that stick to anything you like (highly selectively).

Fig.: RNA-aptamer - purine complex

Aptamer DNA Drugs

- DNA aptamer binds to:
- A) a pathogen
- B) a molecule our immune system already hates and immediately removes (eats) along with anything attached to it
- Result: instant immunity
- Mice poisoned with Anthrax plus aptamer (100\% survival)
- Mice poisoned with Anthrax (not so good)

Kary Mullis (incidentally, also Nobel prize for inventing the Polymerase Chain Reaction)

An example of a linker between a pathogen
and antibodies to the alpha-Gal epitope

Survival Curve of A/J Mice Immunized with Human Serum, Challenged with BAS and Treated with a-gal PAA-12 Aptamer and Doxycycline

Computational DNA Drugs

Perform logical computation before releasing drug

Uses restriction enzymes

An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS (known cancer indicators) and sequentially cutting the DNA hairpin until a ssDNA drug (Vitravene) is released.

DNA Computing Without Enzymes

Strands with opposite orientation and complementary base pairs stick to each other (Watson-Crick pairing)

Bernard Yurke
This simple principle can be used to compute with DNA

DNA Strand Displacement

Short complementary segments bind reversibly

$$
\overrightarrow{\text { ATAAGG }}
$$

TATTCC

Long complementary segments bind irreversibly

GGGTTITGITITGTTITGTT

Bind, Migrate, Displace

```
GGGTITTGTTITGTITTGTT ATAAGG GGGAAAAGATTTGATTTGTT CGAT GGGAAATGTAATGTATTGTT
``` CCCTTATCATATCAATACAA

GGGAAAAGATTTGATTTGTT CCCTITTCTAAACTAAACAA

CGAT GCTA

GGGAAATGTAATGTATTGTT CCCTTTACATTACATAACAA

\section*{Bind, Migrate, Displace}

\section*{Bind, Migrate, Displace}

\section*{Bind, Migrate, Displace}

\section*{Bind, Migrate, Displace}

\section*{GGGAAAAGATTTGATTTGTT CGAT GGGAAATGTAATGTATTGTT}

\section*{Reaction Graph}
- Merge migrations into a single displacement

\section*{Simplified Notation}

\section*{DNA Strand Displacement (DSD)}

\section*{Designing DNA circuits}

Step 1: Program circuit design

Step 4: Compile circuit to DNA

Step 2: Compile circuit behaviour

Step 3: Simulate circuit

Step 5: Insert DNA into cells

\title{
Basic Representation
}

\(\overline{\text { TATTCC }}\) CCCAAAACAAAACAAAACAA

CCCAAAACAAAACAAAACAA GGGTITTGTITTGTITTGTT

\section*{Basic Molecules}
- Strands and Gates
\(12{ }^{2}\)

\{1^* \(\left.2^{*}\right\} \quad<1^{\wedge} 2>\)
[1^2]

[1^ 2]:[3^4]

[1^2]:3^*:[4 5^]
- Overhangs

\section*{Basic Reactions}
- Binding
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 & 1 & 2 & \(\longleftrightarrow\) & 1 & 3 \\
\hline \multicolumn{4}{|l|}{\(<1^{\wedge} 2>\mid 1^{\wedge *}:[3]\)} & \multicolumn{2}{|l|}{\(\left[1^{\wedge}\right]<2>:[3]\)} \\
\hline
\end{tabular}
- Displacement

- Migration
\[
\left[1^{\wedge}\right]<2>:\left[23^{\wedge}\right]
\]
\[
\left[1^{\wedge} 2\right]:<2>\left[3^{\wedge}\right]
\]

\section*{DSD Syntax}
\begin{tabular}{|l|ll|}
\hline dsd & syntax & description \\
\hline S & N & Domain \\
& \(\mathrm{N}^{-}\) & Toehold domain \\
& S1 S2 & Concatenation of S1 and S2 \\
\hline L,R & - & Empty sequence \\
& S & Domain sequence \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline dsd & syntax & description \\
\hline \multirow[t]{5}{*}{G} & \(\mathrm{N}^{\sim}\) & Lower toehold domain \(\mathrm{N}^{\wedge}\) \\
\hline & N & \\
\hline & <L> [S]<R> & Double strand [s] with overhanging strands <L>, <R> \\
\hline & \[
\mathrm{s}
\] & \\
\hline & G1:G2 & Concatenation of gates G1,G2 \\
\hline \multirow[t]{6}{*}{D} & & Strand with sequence complementary to S \\
\hline & G & Gate G \\
\hline & \[
\begin{gathered}
\text { D1 I D2 } \\
\text { D1 D2 }
\end{gathered}
\] & Parallel molecules D1, D2 \\
\hline & & Molecules D with private domain N \\
\hline & \[
{ }^{N} \quad D
\] & \\
\hline & \(\mathrm{X}(\mathrm{n})\) & Module X with parameters n \\
\hline
\end{tabular}

\section*{DSD Semantics}
\begin{tabular}{|c|c|c|c|}
\hline \# & before & red & after \\
\hline RB & \[
\begin{aligned}
& \left\langle L^{N^{\wedge}} R\right\rangle \mid N^{\wedge} \\
& \frac{L}{N} \quad R
\end{aligned}
\] & \[
\xrightarrow{\mathbf{N +}}
\] & \[
\left.\langle L\rangle\left[N^{\wedge}\right]<R\right\rangle
\] \\
\hline RU & \[
\begin{gathered}
\left.\langle L\rangle\left[N^{\sim}\right]<R\right\rangle \\
L
\end{gathered}
\] & \[
\xrightarrow{\mathrm{N}-}
\] & \\
\hline & & \[
\xrightarrow{{\mathbf{s} 2^{\prime}}^{\prime \prime}}
\] & \[
\text { <L1> }\left[\begin{array}{ll}
\text { S1 } & \text { S2 }
\end{array}\right]<\text { R1> | <L2 S2 R2> }
\] \\
\hline RC & \[
\langle\mathrm{L}\rangle[\mathrm{S}]\left\langle\mathrm{N}^{\wedge} \quad \mathrm{R}\right\rangle: \mathrm{N}^{\wedge}
\] & \[
\xrightarrow{\mathrm{N}^{-}}
\] & \[
\begin{gathered}
\langle L\rangle\left[\begin{array}{ll}
\mathrm{S}_{2}^{\wedge} & \left.\mathrm{N}^{-}<\mathrm{R}\right\rangle \\
\mathrm{S} \mathrm{~N}^{\mathrm{N}}
\end{array}\right.
\end{gathered}
\] \\
\hline & \[
\langle\mathrm{L} 1\rangle[\mathrm{S} 1]<\mathrm{S} \text { R1>: }\langle\mathrm{L} 2\rangle\left[\begin{array}{ll}
\mathrm{S} & \mathrm{~S} 2
\end{array}\right]<\mathrm{R} 2>
\] & & \\
\hline
\end{tabular}

\section*{DSD Compilation Algorithm}

Table 7: Syntax of the DSD compiler, where a term \(T\) consists of a set of local domains \(N\), strands \(S\), gates \(G\) and a multiset of reactions \(R\).
\begin{tabular}{lll}
\hline term & syntax & description \\
\hline\(T\) & \((N, S, G, R)\) & \begin{tabular}{l}
Local domains \(N\), upper \\
strands \(S\), gates \(G\), \\
reactions \(R\)
\end{tabular} \\
\(S\) & \(\left\{\left\langle\mathrm{~S}_{1}\right\rangle, \ldots,<\mathrm{S}_{N}>\right\}\) & Set of \(N\) strands \\
\(G\) & \(\left\{\mathrm{G}_{1}, \ldots, \mathrm{G}_{N}\right\}\) & Set of \(N\) gates \\
\(R\) & \(\left\{\theta_{1}, \ldots, \theta_{N}\right\}\) & Multiset of \(N\) reactions \\
\(\theta\) & \(\left(<\mathrm{S}>, \mathrm{G}, r, \mathrm{G}, S^{\prime}\right)\) & Binary reaction \\
& \(\left(\mathrm{G}, r, \mathrm{G}, S^{\prime}\right)\) & Unary reaction \\
\hline
\end{tabular}

Table 8: Computing multisets of reactions and species
\begin{tabular}{|c|c|c|}
\hline before & def & after \\
\hline unary (G) & \(\triangleq\) & \(\left.\left\{\left(\mathrm{G}, r, \mathrm{G},{ }^{\prime}, \mathrm{S}_{1}, \ldots, \mathrm{~S}_{N}\right\}\right)\left|\mathrm{G} \xrightarrow{r} \mathrm{G}^{\prime}\right| \mathrm{S}_{1}|\ldots| \mathrm{S}_{N}\right\}\) \\
\hline \(\operatorname{binary}\) (G, \(S\)) & \(\triangleq\) & \(\left\{(<\mathrm{S}\rangle, \mathrm{G}, r, \mathrm{G}, \underline{\left.\left.\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{N}\right\}\right)|<\mathrm{S}\rangle \in S \wedge \mathrm{G},|<\mathrm{S}\rangle \xrightarrow{r} \mathrm{G}^{\prime}\left|\mathrm{S}_{1}\right| \ldots \mid \mathrm{S}_{N}\right\}}\right.\) \\
\hline \(\operatorname{binary}(<\mathrm{S}>, G)\) & \(\triangleq\) & \(\left.\left.\left\{\left(\langle\mathrm{S}\rangle, \mathrm{G}, r, \mathrm{G},{ }^{\prime}, \mathrm{S}_{1}, \ldots, \mathrm{~S}_{N}\right\}\right)\left|\mathrm{G} \in G \wedge \mathrm{G}^{\prime}\right|<\mathrm{S}\right\rangle \xrightarrow{r} \mathrm{G}^{\prime}\left|\mathrm{S}_{1}\right| \ldots \mid \mathrm{S}_{N}\right\}\) \\
\hline \(\operatorname{react}\left(<\mathrm{S}>, \mathrm{G}, r, \mathrm{G}^{\prime}, S^{\prime}\right)\) & \(\triangleq\) & \{ \(G,\langle S\rangle\) \} \\
\hline \(\operatorname{react}\left(\mathrm{G}, r, \mathrm{G}, S^{\prime}\right)\) & \(\triangleq\) & \{G\} \\
\hline \(\operatorname{prod}\left(<\mathrm{S}>, \mathrm{G}, r, \mathrm{G}^{\prime}, S^{\prime}\right)\) & \(\triangleq\) & \(\{\mathrm{G},\} \uplus S^{\prime}\) \\
\hline \(\operatorname{prod}\left(\mathrm{G}, r, \mathrm{G}^{\prime}, S^{\prime}\right)\) & \(\triangleq\) & \(\{\mathrm{G},\} \uplus S^{\prime}\) \\
\hline \(\operatorname{merge}\left(\theta_{1}, \ldots, \theta_{N}\right)\) & \(\triangleq\) & merge \(\left(\theta_{1}\right) \uplus \ldots \uplus \operatorname{merge}\left(\theta_{N}\right)\) \\
\hline \(\operatorname{merge}\left(\mathrm{G}, r, \mathrm{G}, S^{\prime}\right)\) & \(\triangleq\) & \(\left\{\left(\mathrm{G}, r, \mathrm{G}^{\prime}, S^{\prime} \uplus\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{N}\right\}\right)\left|\mathrm{G}^{\prime} \rightarrow \mathrm{G}^{\prime \prime}\right| \mathrm{S}_{1}|\ldots| \mathrm{S}_{N}\right\}\) \\
\hline merge(\(\mathrm{G},\left\langle\mathrm{S}>, r, \mathrm{G},{ }^{\prime} S^{\prime}\right.\)) & \(\triangleq\) & \(\left\{\left(\mathrm{G},\langle\mathrm{S}\rangle, r, \mathrm{G}^{\prime}, S^{\prime} \uplus\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{N}\right\}\right)\left|\mathrm{G}^{\prime} \rightarrow \mathrm{C}^{\prime}\right| \mathrm{S}_{1}|\ldots| \mathrm{S}_{N}\right\}\) \\
\hline
\end{tabular}

Table 9: Adding molecules to a term of the DSD compiler, where all molecules D are assumed to be in standard form. For the merged semantics, all gates G are also assumed to be in standard form. If \(S\) is a multiset \(\left\{S_{1}, \ldots, S_{N}\right\}\) we write \(S \oplus T\) as short for \(S_{1} \oplus \cdots \oplus S_{N} \oplus T\).
\begin{tabular}{|c|c|c|c|c|}
\hline rule & conditions & before & def & after \\
\hline CN & \(\mathrm{N} \notin N\) & \((\) new N D \() \oplus(N, S, G, R)\) & \(\triangleq\) & \(\mathrm{D} \oplus(\{\mathrm{N}\} \cup N, S, G, R)\) \\
\hline CP & & \(\left(\mathrm{D}_{1} \mid \mathrm{D}_{2}\right) \oplus T\) & \(\triangleq\) & \(\mathrm{D}_{1} \oplus \mathrm{D}_{2} \oplus T\) \\
\hline CSZ & <S> \(\in S\) & <S> \(\oplus(N, S, G, R)\) & \(\triangleq\) & \((N, S, G, R)\) \\
\hline \multirow[t]{2}{*}{CS} & <S> \(\ddagger S \quad S^{\prime}=\operatorname{prod}\left(R^{\prime}\right)\) & <S> \(\oplus(N, S, G, R)\) & \(\triangleq\) & \(S^{\prime} \oplus\left(N,\{<\mathrm{S}>\} \cup S, G, R \uplus R^{\prime}\right)\) \\
\hline & \[
R^{\prime}=\operatorname{merge}(\operatorname{binary}(\langle\mathrm{S}>, G))
\] & & & \\
\hline CGZ & \(\mathrm{G} \in G\) & \(\mathrm{G} \oplus(N, S, G, R)\) & \(\triangleq\) & \((N, S, G, R)\) \\
\hline \multirow[t]{2}{*}{CG} & \(\mathrm{G} \notin G \quad S^{\prime}=\operatorname{prod}\left(R^{\prime}\right)\) & \(\mathrm{G} \oplus(N, S, G, R)\) & \(\triangleq\) & \(S^{\prime} \oplus\left(N, S,\{\mathrm{G}\} \cup G, R \uplus R^{\prime}\right)\) \\
\hline & \(R^{\prime}=\operatorname{merge}\left(\operatorname{unary}(\mathrm{G}) \uplus \operatorname{binary}\left(\mathrm{G}, S^{\prime}\right)\right)\) & & & \\
\hline
\end{tabular}

\section*{DNA Strand Displacement Tool}

\section*{Computing Circuit Behaviour}

\section*{Simulating Circuit Behaviour}

\section*{Abstract Reactions}

\section*{Detailed Reactions}

\section*{Leak Reactions!}

\section*{Just-In-Time Compilation}

\section*{Compilation to DNA}

\section*{Final DNA Circuit}

\section*{Ordering DNA Online}

\section*{Fastest tunaround time for less money!}

Standard gene synthesis from 0.36 €/bp in just 8 days

\section*{Find Out G-Reward}

\section*{Earn rewards for every purchase!}
\begin{tabular}{|c|c|c|}
\hline Custo & \multicolumn{2}{|l|}{DNA/RNA Pricing (USD)} \\
\hline DNA(mg) & Desalted & Purified \\
\hline & \$700 & \\
\hline 50 & \$1.200 & \$1.450 \\
\hline 100 & \$1.500 & \$1.800 \\
\hline \({ }^{250}\) & \$2,000 & \$2,400 \\
\hline 500 & \$2.900 & \$3.400 \\
\hline 1000
5000 & 54.550
89.000 & \(\$ 5.400\)
\(\$ 10770\) \\
\hline RNA(mg) & Desalted & Purified \\
\hline & & \\
\hline 15 & \$1,950 & \$2.490 \\
\hline 50 & \$2.050 & \\
\hline 100 & & \\
\hline \({ }^{250}\) & & \({ }^{55.725}\) \\
\hline 500 & & \$99.190 \\
\hline 1000 & \$13.900 & \$159.900 \\
\hline 5000 & & \$37.125 \\
\hline
\end{tabular}

- Synthesize gene at \(\$ 0.39 / \mathrm{bp}\) (till \(3 / 31 / 2010\))
- Guaranteed \(100 \%\) sequence fidelity
- CloneEZ \({ }^{\text {© }}\) seamless cloning technology

Struggling with cloning?
Try Gene:on-Demand \({ }^{(®)}\) Service!

\section*{Catalytic DNA Circuit}

\section*{Transducer}

\section*{Transducer State Space}

\section*{New Designs}

Ultrasensitive Switch

Arbitrary Chemical System

Timed Oscillator

Petri Nets, Boolean Networks

\section*{Scientific Challenges}
- Design a universal computer made of DNA

- Design smart drugs made of DNA

\title{
Programming Genetic Devices
}

\author{
Michael Pedersen, Neil Dalchau, \\ James Brown \& Andrew Phillips
}

\title{
Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria
}

\author{
J. Christopher Anderson \({ }^{1,3}\), Elizabeth J. Clarke \({ }^{3}\), Adam P. Arkin \({ }^{1,2 *}\) and Christopher A. Voigt \({ }^{2,3}\)
}
\({ }^{1}\) Howard Hughes Medical Institute, California Institute of Quantitative Biology Department of Bioengineering University of California, 717 Potter Street, Room 257
Berkeley, CA 94720, USA
\({ }^{2}\) Physical Biosciences Division E.O. Lawrence Berkeley

National Laboratory, 1
Cyclotron Road, MS 977-257
Berkeley, CA 94710, USA
\({ }^{3}\) Biophysics Program
Department of Pharmaceutical Chemistry, California Institute of Quantitative Biology The University of California San Francisco, 600 16th St. San Francisco, CA 94107 USA
*Corresponding author

Bacteria can sense their environment, distinguish between cell types, and deliver proteins to eukaryotic cells. Here, we engineer the interaction between bacteria and cancer cells to depend on heterologous environmental signals. We have characterized invasin from Yersinia pseudotuburculosis as an output module that enables Escherichia coli to invade cancer-derived cells, including HeLa, HepG2, and U2OS lines. To environmentally restrict invasion, we placed this module under the control of heterologous sensors. With the Vibrio fischeri lux quorum sensing circuit, the hypoxia-responsive fdhF promoter, or the arabinose-inducible araBAD promoter, the bacteria invade cells at densities greater than \(10^{8}\) bacteria/ml, after growth in an anaerobic growth chamber or in the presence of \(0.02 \%\) arabinose, respectively. In the process, we developed a technique to tune the linkage between a sensor and output gene using ribosome binding site libraries and genetic selection. This approach could be used to engineer bacteria to sense the microenvironment of a tumor and respond by invading cancerous cells and releasing a cytotoxic agent.

\title{
Production of the antimalarial drug precursor artemisinic acid in engineered yeast
}

\author{
Dae-Kyun Ro \({ }^{1 *}\), Eric M. Paradise \({ }^{2 *}\), Mario Ouellet \({ }^{1}\), Karl J. Fisher \({ }^{6}\), Karyn L. Newman \({ }^{1}\), John M. Ndungu \({ }^{3}\), Kimberly A. Ho \({ }^{1}\), Rachel A. Eachus \({ }^{1}\), Timothy S. Ham\({ }^{4}\), James Kirby \({ }^{2}\), Michelle C. Y. Chang \({ }^{1}\), Sydnor T. Withers \({ }^{2}\), Yoichiro Shiba \({ }^{2}\), Richmond Sarpong \({ }^{3}\) \& Jay D. Keasling \({ }^{1,2 A .4}\)
}

\begin{abstract}
Malaria is a global health problem that threatens \(300-500\) million people and kills more than one million people annually'. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum \({ }^{23}\). Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing \({ }^{43}\). Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceac commonly known as sweet wormwood), is highly effective agninst multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers". Although total synthesis of artemisinin is difficult and costly', the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin"v. Here we report the engineering of Saccharompes cerevisiac to produce high titres (up to \(100 \mathrm{mgl}^{-1}\)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AVI) from A, annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the eneinecred vgast is already appblc of producing artomisinis
\end{abstract}

To increase FPP production in S. cerevisiac, the expression of several genes responsible for PPP synthesis was upregulated, and one gene responsible for PPP conversion to sterols was downregulated. All of these modifications to the host strain were made by chromosomal integration to ensure the genetic stability of the host strain. Overcxpression of a truncated, soluble form of 3-hydraxy-3-methyl-glataryl-coenzyme A reductase (tHMGR) \({ }^{12}\) improved amorphadiene production approximately fivefold (Fig. 2, strain EYP208). Downregulation of ERG9, which encoder squalene synthase (the first step after PPP in the sterol biosynthetic pothway), asing a methioninerepressible promoter \(\left(\mathrm{P}_{\mathrm{mar}}\right)^{15}\) increased amorphadiene production an additional twofold (Fig. 2, strain EPY225). Athough upc2-1, a semi-dominant mutant aliele that enhances the activity of UPC2 (a global transcription factor regulating the biosynthesis of sterols in S. cerevisiac) \({ }^{4 \prime}\), had only a modest effect on amorphadiene production when overexpressed in the EPY208 background (Fie 2. strain EPY210), the combination of downregulating ERG9 and overexpressing upc2-1 increased amorphadiene production to \(105 \mathrm{mgl}^{-1}\) (Fig. 2, strain EPY213). Intrgration of an additional copy of \(t H M G R\) into the chromosome further increased amorphadiene production by 5095 to \(149 \mathrm{mgl}^{-1}\) (Fig. 2, strain E.PY219) Although overexpression of the gene encoding FPP syathase (ERG20) had little effect on total amorphadiene prodaction (Fig. 2, strain EPY224), the specific production increased by about \(10 \%\)

Figure 1 Schematic representation of the engineered artemisinic acid biosynthetic pathway in S. cerevisiae strain EPY224 expressing CYP71AV1 pricg th a docteas in cell density Combinige all of ihesc.mpdif.

\section*{The international Genetically Engineered Machine Competition}

\section*{Programming Genetic Devices}

\section*{DNA is a 4-letter digital code that tells a cell what proteins to make}

DNA transcription in real time
RNA polymerase II: 15-30 base/second

mRNA translation

\section*{Protein Information Processing}

\section*{Proteins perform information processing for the cell}

\section*{Programmed Self-Assembly}

DNA codes for proteins that self-assemble

\section*{Executing DNA Machine Code}

A simplified view of DNA instructions

\section*{Compiling Designs to DNA}

Given a design, automatically determine the DNA

\section*{Genetic Engineering of Cells (GEC)}

\section*{Designing DNA Software: new instructions for cells}

c1
r0051:prom; rbs; pcr<codes(Q2b)>
rbs; pcr<codes(Q1a)>; ter
prom<pos(Q2b-H2)>; rbs; pcr<prot(A)>; ter
; r0051:prom; rbs; pcr<prot(ccdB)>; ter
| Q1a~~ \(\rightarrow \mathrm{H} 1 \mid \mathrm{Q} 2 \mathrm{~b}+\mathrm{H} 2<->\) Q2b-H2
\(A^{\sim}\) ~ ccdB \(->\mid \operatorname{ccdB}\) ~ Q1a *->\{10.0\}
\(\left|\mathrm{H} 1^{*}->\{10.0\}\right| \mathrm{H} 2{ }^{*}->\{10.0\}\)
\({ }_{c} 111\)
prom<pos(H1-Q1b)>; rbs; pcr<prot(ccdB)>; ter
r0051:prom; rbs; pcr<codes(Q1b)>
rbs; pcr<codes(Q2a)>; ter
| Q2a ~ -> H2 | H1 + Q1b <-> H1-Q1b
\(\mid \mathrm{ccdB}\) ~ Q2a *->\{10.0\}
| H1 *->\{10.0\} | H2 *->\{10.0\}
J
c1[H1] -> H1 | H1 -> c2[H1]
| C2[H2] -> H2 | H2 -> C1[H2]

Step 4: Compile device to DNA
Step 3: Simulate device

prey
(1)

Step 2: Compile device behaviour

\section*{}

\(\mathrm{ccdA}->0.1\}\),
\(\mathrm{ccd} B-\{0.005)\)

Step 5: Insert DNA into cells

\section*{GEC Development Cycle}

\section*{GEC Language: Parts and Properties}
\begin{tabular}{|l|c|}
\hline Part & Representation \\
\hline X:prom & - \\
\hline X:rbs & \(-x\) \\
\hline X:pcr & \(-x\) \\
\hline X:ter & \(-x\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Part Property & Representation \\
\hline X:prom<con(RT)> & \[
\begin{array}{r}
\mathrm{RT} \\
\mathrm{X} \\
\hline
\end{array}
\] \\
\hline X:prom<pos(P,RB,RUB,RTB)> & \\
\hline X:prom<neg(P,RB,RUB,RTB)> & \\
\hline X:rbs<rate(R)> & \[
-\frac{R}{x}-
\] \\
\hline \begin{tabular}{l}
X:pcr<codes(P,RD)> \\
55
\end{tabular} & \\
\hline
\end{tabular}

\section*{GEC Parts Database}
\begin{tabular}{|c|c|c|}
\hline ID & Type & Properties \\
\hline \(i 723017\) & pcr & codes(xylR, 0.001) \\
\hline i723024 & pcr & codes(phzM, 0.001) \\
\hline i723025 & pcr & codes(phzS, 0.001) \\
\hline i723028 & pcr & codes(pca, 0.001) \\
\hline c0051 & pcr & codes(cl, 0.001) \\
\hline c0040 & pcr & codes(tetR, 0.001) \\
\hline c0080 & pcr & codes(araC, 0.001) \\
\hline c0012 & pcr & codes(lacl,0.001) \\
\hline cunknown2 & pcr & codes(unknown2, 0.001) \\
\hline c0061 & pcr & codes(luxl,0.001) \\
\hline c0062 & pcr & codes(luxR,0.001) \\
\hline c0079 & pcr & codes(lasR,0.001) \\
\hline c0078 & pcr & codes(lasl,0.001) \\
\hline cunknown3 & pcr & codes(ccdB,0.005) \\
\hline cunknown4 & pcr & codes(ccdA, 0.1) \\
\hline i723020 & prom & pos(toluene-xylR, 0.001, 0.001, 1.0), con(0.0001) \\
\hline r0051 & prom & neg(cl, 1.0, 0.5, 0.00005), con(0.12) \\
\hline r0040 & prom & neg(tetR, 1.0, 0.5, 0.00005), con(0.09) \\
\hline runknown1 & prom & neg(unknown1, 1.0, 0.005, 0.001), con(0.04) \\
\hline i0500 & prom & neg(araC, 1.0, 0.000001, 0.0001), con(0.1) \\
\hline r0011 & prom & neg(lacl, 1.0, 0.5, 0.00005), con(0.1) \\
\hline runknown2 & prom & pos(lasR-m3OC12HSL, 1.0, 0.8, 0.1), pos(luxR-m3OC6HSL, 1.0, 0.8, 0.1), con(0.000001) \\
\hline b0034 & rbs & rate(0.1) \\
\hline b0015 & ter & \\
\hline cunknown5 & pcr & codes(ccdA2, 10.0) \\
\hline runknown5 & prom & con(10.0) 56 \\
\hline
\end{tabular}

\section*{Compiling GEC Design to Parts}

r0040:prom; b0034:rbs; c0040:pcr; b0015:ter

X1:prom<neg(tetR)>; X2:rbs; X3:pcr<codes(tetR)>; X4:ter

prom<neg(Y)>; rbs; pcr<codes \((\mathrm{Y})>\); ter
- Specific set of parts:
[r0040; b0034; c0040; b0015]
- tetR negative feedback
[r0040; b0034; c0040; b0015]
- Any negative feedback:
[r0051; b0034; c0051; b0015]
[r0040; b0034; c0040; b0015] [i0500; b0034; c0080; b0015] [r0011; b0034; c0012; b0015]

\section*{GEC Language: Reactions}
\begin{tabular}{|c|c|}
\hline part property \& reactions & representation \\
\hline \[
\begin{aligned}
& X: \operatorname{prom}<\operatorname{pos}(P, R B, R U B, R T B)> \\
& g+P \rightarrow\{R B\} g-P \\
& g-P \rightarrow\{R U B\} g+P \\
& g-P \rightarrow\{R T B\} g-P+m
\end{aligned}
\] & P \\
\hline \[
\begin{aligned}
& X: \operatorname{prom}<\operatorname{neg}(\mathrm{P}, \mathrm{RB}, \mathrm{RUB}, \mathrm{RTB})> \\
& \mathrm{g}+\mathrm{P} \rightarrow\{\mathrm{RB}\} \mathrm{g}-\mathrm{P} \\
& \mathrm{~g}-\mathrm{P} \rightarrow\{\mathrm{RUB}\} \mathrm{g}+\mathrm{P} \\
& \mathrm{~g}-\mathrm{P} \rightarrow\{\mathrm{RTB}\} \mathrm{g}-\mathrm{P}+\mathrm{m}
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& \text { X:prom<con(RT)> } \\
& g \rightarrow\{\mathrm{RT}\} \mathrm{g}+\mathrm{m} \\
& \mathrm{~m} \rightarrow\{\mathrm{rdm}\}
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& X: r b s<\operatorname{rate}(R)> \\
& m \rightarrow\{R\} m+p
\end{aligned}
\] & \[
-\frac{\mathrm{R}}{\mathrm{x}}
\] \\
\hline \[
\begin{aligned}
& X: p c r<\operatorname{codes}(P, R D)> \\
& p \rightarrow\{R D\}
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline reaction & representation \\
\hline \(\mathrm{c}[\mathrm{S}] \rightarrow\{\mathrm{RO}\} \mathrm{S}\) & \\
\hline \(\mathrm{S} \rightarrow\{\mathrm{RI}\} \quad \mathrm{C}[\mathrm{S}]\) & \(\mathrm{S} \rightarrow \xrightarrow[\mathrm{RI}]{\substack{\mathrm{c} \\ \mathrm{S}}}\) \\
\hline \[
\begin{aligned}
& \mathrm{E} \sim \mathrm{~S} 1+\ldots+\mathrm{SN} \\
& \rightarrow\{\mathrm{R}\} \mathrm{T} 1+\ldots+\mathrm{TM}
\end{aligned}
\] & \\
\hline
\end{tabular}
```

luxR +m30C6HSL }->{1.0} luxR-m30C6HSL
luxR-m30C6HSL }->{1.0} luxR + m30C6HSL
lasR + m3OC12HSL }->{1.0} lasR -m30C12HSL
lasR - m3OC12HSL }->{1.0} lasR + m30C12HSL
luxI ~ -> {1.0} m30C6HSL
lasI ~ }->{1.0} m30C12HS
ccdA ~ ccdB }->{1.0
CcdA2 ~ CCdB }->{0.00001
m30C6HSL }->{1.0} [m30C6HSL
m30C12HSL }->{1.0} [m30C12HSL]
[m30C6HSL] }->{1.0} m3OC6HSL
[m3OC12HSL] }->{1.0} m30C12HSL

```

\section*{Compiling GEC Parts to Reactions}
 r0040:prom; b0034:rbs; c0040:pcr; b0015:ter

```

rate mrnaDeg = 0.001;
init gcl 1
| gcl ->{0.12} gcl + mcl
|gcl + cl ->{1} gcl_cl
| gcl_cl ->{0.5}gcl + cl
| gcl_cl ->{5e-5} gcl_cl + mcl
| mcl ->{0.1} mcl + cl
| mcl ->{mrnaDeg}
| cl ->{0.001}

```


\section*{Example: Repressilator}
- A gene network engineered in live bacteria.

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory
Network of Transcriptional Regulators. Nature 403:335-338.

\section*{Example: Repressilator}

\section*{Repressilator Design}

24 possible solutions, many of them defective, e.g.
[r0051; b0034; c0040; b0015
; r0040; b0034; c0080; b0015
; i0500; b0034; c0051; b0015]

\section*{Case Study: Repressilator}

\section*{Add constraints on rates, e.g. promoter strength}

prom<con(RtA),neg(C,RbA,RubA,RtbA)>; rbs<rate(RA)>; pcr<codes(A,RdA)>; ter; prom<con(RtB),neg(A,RbB,RubB,RtbB)>; rbs<rate(RB)>; pcr<codes(B,RdB)>; ter; prom<con(RtC),neg(B,RbC,RubC,RtbC)>;rbs<rate(RC)>; pcr<codes(C,RdC)>; ter

\section*{Selects functional Repressilator}
[r0040; b0034; c0051; b0015
; r0051; b0034; c0012; b0015
; r0011; b0034; c0040; b0015]

\section*{Case Study: Repressilator}

\section*{Definition of modules}

```

module gate(i,o) {
prom<neg(i)>; rbs; pcr<codes(o)>; ter
};
gate(A,B) | gate(B,C) | gate(C,A)

```

module gate(i,o) \{
new RB. new RUB. new RTB. new RT. new R. new RD.
prom<con(RT), neg(i, RB, RUB, RTB)>;rbs<rate(R)>; pcr<codes(o,RD)>; ter
| 0.4 < RUB | RUB < 0.6
\};
gate \((A, B) \mid\) gate \((B, C) \mid\) gate \((C, A)\)

\section*{Case Study: Predator Prey}

\section*{Specified in GEC as follows}

```

predator
[ r0051:prom; rbs; pcr<codes(Q2b)>
; rbs; pcr<codes(Q1a)>; ter
; prom<pos(Q2b-H2)>; rbs; pcr<codes(A)>; ter
; r0051:prom; rbs; pcr<codes(ccdB)>; ter
| Q1a ~-> H1 | Q2b + H2 <-> Q2b-H2
| A ~ccdB ->
]
|
prey
[ prom<pos(H1-Q1b)>; rbs; pcr<codes(ccdB)>; ter
; r0051:prom; rbs; pcr<codes(Q1b)>
; rbs; pcr<codes(Q2a)>; ter
| Q2a ~-> H2 | H1 + Q1b <-> H1-Q1b
]
||predator[H1] -> H1 | H1 -> prey[H1]
| prey[H2] -> H2 | H2 -> predator[H2]

```

\section*{Case Study: Predator Prey}

\section*{Case Study: Predator Prey}

\section*{Compile to parts to reactions and simulate}

r0051; b0034; c0062; b0034; c0078; b0015; runknown2; b0034; cunknown4; b0015; r0051; b0034; cunknown3; b0015 II
runknown2; b0034; cunknown3; b0015; r0051;b0034;c0061;b0034;c0079;b0015

\section*{GEC Calculus}
\begin{tabular}{rl}
\(P::=\) & \(u: t\left(Q^{t}\right)\) \\
& \(\vdots \mathbf{0}\) \\
& \(\vdots p(\tilde{u})\left\{P_{1}\right\} ; P_{2}\) \\
& \(\vdots p(\tilde{A})\) \\
& \(\vdots P \mid C\) \\
& \(\vdots P_{1} \| P_{2}\) \\
& \(\vdots P_{1} ; P_{2}\) \\
& \(\vdots c[P]\)
\end{tabular}
part \(u\) of type \(t\) with properties \(Q^{t}\) empty program
definition of module \(p\) with formals \(\tilde{u}\)
invocation of module p with actuals \(A\)
constraint \(C\) associated to program \(P\)
parallel composition of \(P_{1}\) and \(P_{2}\) sequential composition of \(P_{1}\) and \(P_{2}\)
compartment \(c\) containing program \(P\)
local variable \(x\) inside program \(P\) reaction
transport reaction
numerical constraint
conjunction of \(C_{1}\)
and \(C_{2}\)
reactants \(S_{i}\), products \(S_{j}\)
transport of \(S\) into compartment \(c\) transport of \(S\) out of compartment \(c\)
expression \(E_{1}\) greater than \(E_{2}\) real number or variable arithmetic operation \(\otimes\) on \(E_{1}\) and \(E_{2}\)
real number or variable species
(i) \(\llbracket u: t\left(Q^{t}\right) \rrbracket \triangleq(\{(u)\}, \boldsymbol{\Theta})\), where
\[
\begin{aligned}
\Theta=\{ & \left\{\left(\theta_{i}, \rho_{i}, \sigma_{i}, \mathrm{FS}\left(Q_{i}\right) \backslash \sigma_{i}\right) \mid\right. \\
& u \theta_{i}: t\left(Q_{i}\right) \in \mathcal{K}_{b}, Q^{t} \theta_{i} \subseteq Q_{i} \\
& \operatorname{Dom}\left(\theta_{i}\right)=\mathrm{FV}\left(u: t\left(Q^{t}\right)\right) \\
& \left.\rho_{i}=\operatorname{Dom}_{\mathrm{s}}\left(\theta_{i}\right), \sigma_{i}=\operatorname{FS}\left(Q^{t} \theta_{i}\right)\right\}
\end{aligned}
\]
(ii) \(\llbracket P \mid C \rrbracket \triangleq\left(\Delta, \Theta_{1} \boxtimes \Theta_{2}\right)\), where
\[
\left(\Delta, \Theta_{1}\right)=\llbracket P \rrbracket \quad \text { and } \quad \Theta_{2}=\llbracket C \rrbracket .
\]
(iii) \(\llbracket P_{1} \| P_{2} \rrbracket \triangleq\left(\Delta_{1} \cup \Delta_{2}, \Theta_{1} \oslash \Theta_{2}\right)\), where
\[
\left(\Delta_{1}, \Theta_{1}\right)=\llbracket P_{1} \rrbracket \quad \text { and } \quad\left(\Delta_{2}, \Theta_{2}\right)=\llbracket P_{2} \rrbracket .
\]
(iv) \(\llbracket P_{1} ; P_{2} \rrbracket \triangleq\left(\left\{\delta_{1_{i}} \delta_{2_{j}}\right\}_{I \times J}, \Theta_{1} \boxtimes \Theta_{2}\right)\), where
\(\left(\left\{\delta_{1_{i}}\right\}_{I}, \Theta_{1}\right)=\llbracket P_{1} \rrbracket\) and \(\left(\left\{\delta_{2 j}\right\}_{J}, \Theta_{2}\right)=\llbracket P_{2} \rrbracket\).
(v) \(\llbracket c[P] \rrbracket \triangleq(\Delta,\{(\theta, \emptyset, \emptyset, \emptyset) \mid(\theta, \rho, \sigma, \tau) \in \Theta\})\), where \((\Delta, \Theta)=\llbracket P \rrbracket\).
(vi) \(\llbracket R \rrbracket \triangleq\left\{\left(\theta_{i}, \operatorname{Dom}_{\mathrm{s}}\left(\theta_{i}\right), \operatorname{FS}\left(R \theta_{i}\right), \emptyset\right) \mid\right.\)
\[
\left.R \theta_{i} \in \mathcal{K}_{r}, \operatorname{Dom}\left(\theta_{i}\right)=\mathrm{FV}(R)\right\}
\]

Proposition 3.1 (piecewise injectivity). For any context \(\mathcal{C}(\cdot)\) and any compartment-free program \(P\) with \(\mathrm{FP}(P)=\emptyset, \llbracket \mathcal{C}(P) \rrbracket=\Delta\left\{\left(\theta_{i}, \rho_{i}, \sigma_{i}, \tau_{i}\right)\right\}\), it holds that \(\theta_{i}\) is injective on the domain \(\mathrm{FV}(P) \cap \operatorname{Dom}_{\mathrm{s}}\left(\theta_{i}\right)\).

Proposition 3.2 (non-interference). For any basic program \(P=u: t\left(Q^{t}\right)\) and any compartment-free context \(\mathcal{C}(\cdot)\) with \(\llbracket \mathcal{C}(P) \rrbracket=\Delta\left\{\left(\theta_{i}, \rho_{i}, \sigma_{i}, \tau_{i}\right)\right\}\), it holds that \(u \theta_{i}: t(Q) \in \mathcal{K}_{b}\) for some \(Q\) and \(\sigma_{i} \cap(\mathrm{FS}(Q) \backslash\) \(\left.\operatorname{FS}\left(Q^{t} \theta_{i}\right)\right)=\emptyset\).
(i) \(\theta: X \hookrightarrow N_{\mathrm{s}} \cup N_{\mathrm{p}} \cup \mathbb{R}\) is a finite, partial function (the substitution).
(ii) \(\rho \subsetneq X\) is a set of variables over which \(\theta\) is injective, i.e. \(\forall x_{1}, x_{2} \in \rho .\left(x_{1} \neq x_{2}\right) \Rightarrow\left(\theta\left(x_{1}\right)\right.\) \(\neq \theta\left(x_{2}\right)\)).
(iii) \(\sigma, \tau \subsetneq \mathcal{S}\) are, respectively, the species names that have been used in the current context and the species names that are excluded for use, and \(\sigma \cap \tau=\emptyset\).

\section*{GEC Compilation Algorithm \\ \[
L::=R: T: 0 \quad 0 \quad L_{1} \mid L_{2}: c[L]
\]}

Given a set \(\mathcal{L}\) of LBS models, we let (par \(\mathcal{L}\)) denote their parallel composition; this operator is commutative, so the order is insignificant. With the above motivation in mind, the translation function takes the following form:
\[
\left[P \rrbracket_{\Gamma}=(L, D, M, P r, F, G, H)\right.
\]
where
- \(L\) is an LBS program.
- \(D\) is a set of degradation reactions.
- \(M \subset U\) is a set of mRNA names.
- \(\operatorname{Pr} \subset U\) is a set of protein names.
- \(F\) is a function of the form \(f(m, p)=R\) mapping pairs \((m, p) \in U \times U\) of mRNA and protein names to a reaction.
- \(G\) is a function of the form \(g(m)=R\) mapping an mRNA species name \(m \in U\) to a reaction.
- \(H\) is a function of the form \(h(p)=R\) mapping a protein name \(p \in U\) to a reaction.
The translation is defined inductively on GEC programs as follows, where we again assume a global mRNA degradation rate \(r d m\).
1. \(\llbracket u: \operatorname{prom}(Q) \rrbracket_{\Gamma} \triangleq\left(\operatorname{par}\{\operatorname{reacs}(q) \mid q \in Q\} \mid m \rightarrow^{r d m},\{m\}, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\right)\) where
- \(\operatorname{reacs}(\operatorname{con}(r t)) \triangleq g \rightarrow{ }^{r t} g+m\).
- \(\operatorname{reacs}(\operatorname{pos}(S, r b, r u b, r t b)) \triangleq g+S \rightarrow_{r t b}^{r b} g-S\left|g-S \rightarrow{ }^{r u b} g+S\right|\) \(g-S \rightarrow{ }^{r t b} g-S+m\).
- reacs \((\operatorname{neg}(S, r b, r u b, r t b)) \triangleq g+S \rightarrow{ }^{r b} g-S\left|g-S \rightarrow{ }^{r u b} g+S\right|\) \(g-S \rightarrow{ }^{r t b} g-S+m\).
with \(g\) and \(m\) fresh.
2. \(\llbracket u: \operatorname{rbs}(\{\operatorname{rate}(r)\}) \rrbracket_{\Gamma} \triangleq(0, \emptyset, \emptyset, \emptyset,\{f\}, \emptyset, \emptyset)\) where \(f(m, p) \triangleq m \rightarrow^{r} p\).
3. \(\llbracket u: \operatorname{pcr}(\{\operatorname{codes}(p, r)\}) \rrbracket_{\Gamma} \triangleq\left(0,\left\{p \rightarrow^{r}\right\}, \emptyset,\{p\}, \emptyset, \emptyset, \emptyset\right)\).
4. \(\llbracket u: \operatorname{ter} \rrbracket_{\Gamma} \triangleq(0, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)\).
5. \(\llbracket 0 \rrbracket_{\Gamma} \triangleq(0, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)\).
6. \(\llbracket p(\widetilde{u})\left\{P_{1}\right\} ; P_{2} \rrbracket_{\Gamma} \triangleq \llbracket P_{2} \rrbracket_{\Gamma\{p \mapsto f\}}\) where
\(f(\widetilde{A}) \triangleq \llbracket P_{1}\{\widetilde{A} / \widetilde{u}\} \rrbracket\).
7. \(\llbracket p(\widetilde{A}) \rrbracket_{\Gamma} \triangleq f(\widetilde{A})\) where \(f \triangleq \Gamma(p)\).
8. \(\llbracket P \mid C \rrbracket_{\Gamma} \triangleq\left(L_{1} \mid L_{2}, D, M, P r, F, G, H\right)\) where \(\left(L_{1}, D, M, P r, F, G, H\right) \triangleq \llbracket P \rrbracket_{\Gamma}\) and \(L_{2} \triangleq \llbracket C \rrbracket\).
9. \(\llbracket P_{1} \| P_{2} \rrbracket_{\Gamma} \triangleq\left(L_{1} \mid L_{2}, D_{1} \cup D_{2}, M_{1} \cup M_{2}, P r_{1} \cup P r_{2}, F_{1} \cup F_{2}, G_{1} \cup\right.\) \(G_{2}, H_{1} \cup H_{2}\)) where
\(\left(L_{1}, D_{1}, M_{1}, P r_{1}, F_{1}, G_{1}, H_{1}\right) \triangleq \llbracket P_{1} \rrbracket_{\Gamma}\) and
\(\left(L_{2}, D_{2}, M_{2}, \operatorname{Pr}_{2}, F_{2}, G_{2}, H_{2}\right) \triangleq \llbracket P_{2} \rrbracket_{\Gamma}\).
10. \(\llbracket P_{1} ; P_{2} \rrbracket_{\Gamma} \triangleq\left(L_{1}\left|L_{2}\right| L, D_{1} \cup D_{2}, M, P r, F_{1}^{\prime} \cup F_{2}^{\prime}, G, H\right)\) where \(\left(L_{1}, D_{1}, M_{1}, \operatorname{Pr}_{1}, F_{1}, G_{1}, H_{1}\right) \triangleq \llbracket P_{1} \rrbracket_{\Gamma}\),
\(\left(L_{2}, D_{2}, M_{2}, \operatorname{Pr}_{2}, F_{2}, G_{2}, H_{2}\right) \triangleq \llbracket P_{2} \rrbracket_{\Gamma}\),
\(L \triangleq \operatorname{par}\left\{g(m) \mid g \in G_{2}, m \in M_{1}\right\} \cup \operatorname{par}\left\{h(p) \mid h \in H_{1}, p \in \operatorname{Pr}_{2}\right\}\),
\(M \triangleq \begin{cases}M_{1} & \text { if } M_{2}=\emptyset \\ M_{2} & \text { otherwise }\end{cases}\)
\(P r \triangleq \begin{cases}P r_{2} & \text { if } P r_{1}=\emptyset \\ P r_{1} & \text { otherwise }\end{cases}\)
\(\left(F_{1}^{\prime}, H_{1}^{\prime}\right) \triangleq \begin{cases}\left(F_{1}, H_{1}\right) & \text { if } \operatorname{Pr}_{2}=\emptyset \\ (\emptyset, \emptyset) & \text { otherwise }\end{cases}\)
\(\left(F_{2}^{\prime}, G_{2}^{\prime}\right) \triangleq \begin{cases}\left(F_{2}, G_{2}\right) & \text { if } M_{1}=\emptyset \\ (\emptyset, \emptyset) & \text { otherwise }\end{cases}\)
\(G \triangleq\left\{g \mid g(m) \triangleq f(m, p), f \in F_{1}, p \in P r_{2}\right\} \cup G_{1} \cup G_{2}^{\prime}\),
\(H \triangleq\left\{h \mid h(p) \triangleq f(m, p), f \in F_{2}, m \in M_{1}\right\} \cup H_{2} \cup H_{1}^{\prime}\).
11. \(\llbracket c[P] \rrbracket_{\Gamma} \triangleq(c[L], D, M, P r, F, G, H)\) where
\((L, D, M, P r, F, G, H) \triangleq\left[P_{1}\right]_{\Gamma}\).
12. \(\llbracket\) new \(x . P \rrbracket_{\Gamma} \triangleq\left[P\left[x^{\prime} / x\right] \rrbracket_{\Gamma}\right.\) for some fresh \(x^{\prime}\).
13. \(\llbracket R \rrbracket \triangleq R\).
14. \(\llbracket T \rrbracket \triangleq T\).
15. \(\llbracket K \rrbracket \triangleq 0\).
16. \(\llbracket C_{1}\left|C_{2} \rrbracket \triangleq \llbracket C_{1} \rrbracket\right| \llbracket C_{2} \rrbracket\).

\section*{GEC Demo: Databases}

\section*{GEC Demo: Models}

\section*{GEC Demo: Reactions}

Compilation
Output directory: C:\Users laphillip \Desktop \Techfest \(\backslash\) Demo \GEC \(\ldots\) Output filename (no extension):

\section*{Compiler messages:}

\section*{Compilation successful.}

\section*{GEC Demo: Simulations}

\section*{Scientific Challenges}
- Engineer Turing Patterns in living cells

turing
[prom; rbs; pcr<codes(X)>; ter
| prom<pos(X-C6)>;
rbs; pcr<codes(luxl)>;
rbs; pcr<codes(lasl)>;
rbs; pcr<codes(gfp)>; ter
| luxl ~ -> C6 | lasi ~ -> C12
\(|X+C 12->X-C 12| X-C 12->X+C 12\)
\(|X+C 6->X-C 6| X-C 6->X+C 6\)
\(\mid \mathrm{X}-\mathrm{C} 6+\mathrm{C} 122^{*}->\{1.0\} \mathrm{X}-\mathrm{C} 12+\mathrm{C} 6\)
1
| C6 ->c[C6] | c[C6] -> C6
| C12 > c c[12] | c[C12] > C12

- Engineer bacteria to fix nitrogen for plants

\section*{Future Work}

\section*{Parts}
- Better part characterisation
- More realistic part properties

User Interface
- Visual editor
- Web-based tool

Analysis
- Integrated ODE analysis

\section*{Implementation}
- Optimise translation to DNA sequences

\title{
A Programming Language for Biological Processes
}

\author{
Luca Cardelli, Andrew Phillips
}

\section*{Systems Biology}
- The Human Genome project:
- Map out the complete genetic code in humans
- To unravel the mysteries of how the human body functions
- The code raised many more questions than answers
- Systems Biology:
- Understand and predict the behaviour of biological systems
- Two complementary approaches:
- Look at experimental results and infer system properties
- Build detailed models of systems and test these in the lab
- Biological Modelling:
- Conduct virtual experiments, saving time and resources
- Clarify key mechanisms of how a biological system functions
- Beginning to play a role in understanding disease

\section*{Large, Complex, Biological Models}

\section*{Biological Programming}
- Complex Models:
- Difficult to understand, maintain and extend
- Hundreds of reactions, soon to be tens of thousands
- Would not write a program as a single list of thousands of instructions
- Modularity:
- Need a way of decomposing a model into building blocks
- Not your average computer programs
- Massive parallelism, each instruction has a certain probability
- Suggests a need for a biological programming language

\section*{Programming Languages for Biology}

Languages for complex, parallel computer systems:

Languages for complex, parallel biological systems:
\(\pi\)-calculus by [Milner et al. 1989]. Stochastic version by [Priami et al. 1995] First used in a biological context by [Regev et al. 2001]

\section*{SPiM: Stochastic \(\pi\) for Biology}
- A variant of stochastic \(\pi\) calculus
- Supports expressive power of \(\pi\)
- Graphical syntax and semantics
- Biological constructs, e.g. complexation
- Efficient implementation

\section*{Message-Passing Approach}

Chemical Reactions

\(X p+Y \rightarrow{ }_{a} X+Y p\)
\(X+Y p \rightarrow_{d} X p+Y\)

SPiM Processes

\(X p=\bar{a} . X\)
\(Y=\underline{a} . Y p\)
\(X=\) d. \(X p\)
\(Y p=\bar{d} . Y\)

\section*{Compact, Modular Models}

Chemical Reactions
SPiM Processes

\section*{Improving Modularity with SPiM}

EGFR chemical reactions

\section*{EGFR SPiM processes}

\section*{SPiM Syntax}
\[
\begin{aligned}
\pi::= & \underline{x}(m) \\
& \bar{x}\langle n\rangle \\
& \bar{x}(m) \\
& r \\
M::= & \pi_{1} \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N} \\
P::= & P_{1}|\ldots| P_{M} \\
& X(n) \\
& \left(x_{1}, \ldots, x_{\mathrm{N}}\right) P \\
D::= & P \\
& M \\
E::= & X_{1}\left(m_{1}\right)=D_{1}, \ldots, \\
& X_{N}\left(m_{N}\right)=D_{N} \\
S::= & E, P
\end{aligned}
\]

Receive value \(m\) on channel \(x\)
Send value \(n\) on channel \(x\)
Send restricted value \(m\) on channel \(x\)
Delay at rate \(r\)
Choice between actions
Parallel composition of processes
Species \(X\) with parameters \(n\)
Restriction of channels \(x_{1}, \ldots, x_{\mathrm{N}}\) to \(P\)
Definition of a process
Definition of a choice
Definitions for \(X_{\mathrm{i}}\) with parameters \(m_{\mathrm{i}}\)

System of \(E\) and \(P\)

\section*{Normal Form Syntax}
- Every process is equivalent to a normal form
\begin{tabular}{ccl}
\(P::=\) & \(I_{1}|\ldots| I_{N}\) & Species \\
\(I::=\) & \(X(\tilde{n})\) & Instance \\
& \(\mid=\) & \(\nu \tilde{z}\left(\left(X_{1}\left(\tilde{n}_{1}\right)|\ldots| X_{M}\left(\tilde{n}_{M}\right)\right)\right.\) \\
\(C:=\) & \(\pi_{1} \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N}\) & Complex \\
\(E::=\) & \(X_{1}\left(\tilde{m}_{1}\right) \mapsto C_{1}, \ldots, X_{N}\left(\tilde{m}_{N}\right) \mapsto C_{N}\) & Choice \\
& & Environment
\end{tabular}

\section*{Graphical Syntax: Environment}

\section*{Graphical Syntax: Processes}
\begin{tabular}{|c|c|c|}
\hline Parallel & Species & Restriction \\
\hline \(P_{1}|\ldots| P_{M}\) & \(X(n)\), if \(X(m)=C\) & \(v\left(x_{1}, \ldots x_{\mathrm{N}}\right)\left(X_{1}\left(n_{1}\right)|\ldots| X_{N}\left(n_{N}\right)\right)\) \\
\hline P1 \({ }^{\prime}{ }^{\text {c }}\) & \[
\begin{aligned}
& \mathrm{m}:=\mathrm{n} \\
& \mathbf{X}(\mathrm{~m})
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Graphical Semantics: Delay}

\[
\begin{aligned}
& X(m)=r \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N} \\
& X(m)
\end{aligned}
\]

\title{
Graphical Semantics: Delay
}

\[
\begin{aligned}
& X(m)=r \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N} \\
& X(m) \longrightarrow P_{1}
\end{aligned}
\]

\section*{Graphical Semantics: Interaction}

\[
\begin{aligned}
& X(n)=\bar{x} \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N} \quad, \quad Y(m)=\underline{x} \cdot Q_{1}+\ldots+\pi_{M} \cdot Q_{M} \\
& X(n) \mid Y(m)
\end{aligned}
\]

\section*{Graphical Semantics: Interaction}

\[
\begin{aligned}
& X(n)=\bar{x} \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N} \quad, \quad Y(m)=\underline{x} \cdot Q_{1}+\ldots+\pi_{M} \cdot Q_{M} \\
& X(n)\left|Y(m) \longrightarrow P_{1}\right| Q_{1}
\end{aligned}
\]

\section*{Graphical Semantics: Binding}

\[
\begin{aligned}
& X(n)=\bar{x}(u) \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N}, \quad Y(m)=\underline{x}(u) \cdot Q_{1}+\ldots+\pi_{M} \cdot Q_{M} \\
& X(n) \mid Y(m)
\end{aligned}
\]

\section*{Graphical Semantics: Binding}

\[
\begin{aligned}
& X(n)=\bar{x}(u) \cdot P_{1}+\ldots+\pi_{N} \cdot P_{N}, Y(m)=\underline{x}(u) \cdot Q_{1}+\ldots+\pi_{M} \cdot Q_{M} \\
& X(n) \mid Y(m) \longrightarrow(v u)\left(P_{1} \mid Q_{1}\right)
\end{aligned}
\]

Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)

\begin{tabular}{|l|l|l|}
\hline reaction & rate & propensity \(\left(\mathbf{s}^{\mathbf{- 1}}\right)\) \\
\hline produce & 0.1 & \(0.1 \cdot 1\) \\
\hline degrade & 0.001 & \(0.001 \cdot 0\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{G} & =\text { produce. }(\mathrm{P} \mid \mathrm{G}) \\
\mathrm{P} & =\text { degrade. } 0
\end{aligned}
\]
- A protein \(P\) can be produced with propensity 0.1
- Probability of a reaction depends on propensity
- Exact simulation: what happens next?

Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)

\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{\mathbf{- 1}}\right)\) \\
\hline produce & 0.1 \\
\hline degrade & 0.001 \\
\hline
\end{tabular}
- Another protein \(P\) can be produced
- 100 times more likely to produce than degrade

\section*{Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)}

\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{\mathbf{- 1}}\right)\) \\
\hline produce & 0.1 \\
\hline degrade & \(0.001 \cdot 2\) \\
\hline
\end{tabular}
- And another...

\section*{Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)}

\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{\mathbf{- 1}}\right)\) \\
\hline produce & 0.1 \\
\hline degrade & 0.001 .3 \\
\hline
\end{tabular}
- A protein \(b\) can be degraded at rate 0.001
- Low probability, but still possible

\section*{Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)}

\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{-1}\right)\) \\
\hline produce & 0.1 \\
\hline degrade & 0.001 .2 \\
\hline
\end{tabular}
- Eventually...

Production: \(G \rightarrow \rightarrow^{\text {produce }} G+P \quad P \rightarrow\) degrade \(\varnothing\)

\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{-1}\right)\) \\
\hline produce & 0.1 \\
\hline degrade & \(0.001 \cdot 100\) \\
\hline
\end{tabular}
- Equilibrium at about 100 proteins.
- Propensities of both reactions are equal.

\section*{Gene Simulation}

- Simulation results show evolution over time
- Level of protein P fluctuates around 100

\section*{Interaction: \(X p+Y_{d} \leftrightarrow^{\mathrm{a}} X+Y p\)}
\[
\begin{array}{ll}
X p=\bar{a} \cdot X & Y=\underline{a} \cdot Y p \\
X=\underline{d} . X p & Y p=\bar{d} . Y
\end{array}
\]

- \(X p\) and \(Y\) can interact on channel \(a\)
- Xp activates \(Y\) by sending its phosphate group

\section*{Interaction: \(X p+Y{ }_{d} \leftrightarrow^{\mathrm{a}} X+Y p\)}

- \(X\) and \(Y p\) can interact on channel \(d\)

\section*{Interaction: \(X p+Y{ }_{d} \leftrightarrow^{a} X+Y p\)}

- Interactions can continue indefinitely...

\section*{Interaction: \(X p+Y{ }_{d} \leftrightarrow^{a} X+Y p\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{-1} \mathbf{)}\) \\
\hline a & \(100 \cdot 100 \cdot 100\) \\
\hline d & 0 \\
\hline
\end{tabular}

- What happens if we mix \(100 \cdot X p\) and \(100 \cdot Y\) ?
- Assume \(\operatorname{rate}(a)=100 \mathrm{~s}^{-1}\) and \(\operatorname{rate}(d)=10 \mathrm{~s}^{-1}\)
- An \(X p\) and \(Y\) protein can interact on channel \(a\).

\section*{Interaction: \(x p+Y\)}
\({ }_{d} \leftrightarrow^{\mathrm{a}} X+Y p\)
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{-1} \mathbf{)}\) \\
\hline a & 100.99 .99 \\
\hline d & 10.1 .1 \\
\hline
\end{tabular}

- An additional \(X p\) and \(Y\) protein can interact.

\section*{Interaction: \(X p+Y{ }_{d} \leftrightarrow^{a} X+Y p\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{\mathbf{- 1}} \mathbf{)}\) \\
\hline a & \(100.98 \cdot 98\) \\
\hline d & \(10.2 \cdot 2\) \\
\hline
\end{tabular}

- An \(X\) and \(Y p\) protein can interact

\section*{Interaction: \(x p+Y\)}
\({ }_{d} \leftrightarrow^{\mathrm{a}} X+Y p\)
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{-1} \mathbf{)}\) \\
\hline a & 100.99 .99 \\
\hline d & 10.1 .1 \\
\hline
\end{tabular}

- Eventually an equilibrium is reached...

\section*{Interaction: \(x p+Y\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{-1}\right)\) \\
\hline a & \(100 \cdot 24 \cdot 24\) \\
\hline d & \(10.76 \cdot 76\) \\
\hline
\end{tabular}

- At equilibrium when rate \((a) \cdot[X p][Y] \approx \operatorname{rate}(d) \cdot[X][Y p]\)

\section*{Interaction: \(X p+Y{ }_{d} \leftrightarrow^{a} X+Y p\)}

- At equilibrium: \(100 \mathrm{~s}^{-1} \cdot[X p][Y] \approx 10 \mathrm{~s}^{-1} \cdot[X][Y p]\)
- Approximately \(24 \cdot X p\) and \(76 \cdot X\)

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\[
\begin{array}{ll}
X=\bar{b}(u) \cdot X^{\prime} & Y=\underline{b}(u) \cdot Y^{\prime} \\
X^{\prime}=\underline{u} \cdot X & Y^{\prime}=\bar{u} \cdot \mathbf{Y}
\end{array}
\]

- \(X\) and \(Y\) can bind on channel \(b\)

\section*{Binding: \(X+Y_{u^{\leftrightarrow}} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}

- \(X^{\prime}\) and \(Y^{\prime}\) can unbind on channel \(u\)

\section*{Binding: \(X+Y_{{ }_{u}} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}

- Binding and unbinding can continue indefinitely...

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left.\mathbf{(s}^{\mathbf{- 1}}\right)\) \\
\hline\(b\) & \(100 \cdot 100 \cdot 100\) \\
\hline u & 0 \\
\hline
\end{tabular}

- What happens if we mix \(100 \times X p\) and \(100 \times Y\) ?
- Assume \(\operatorname{rate}(b)=100 \mathrm{~s}^{-1}\) and \(\operatorname{rate}(u)=10 \mathrm{~s}^{-1}\)
- An \(X\) and \(Y\) protein can bind on channel \(b\).

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{\mathbf{- 1}} \mathbf{)}\) \\
\hline\(b\) & 100.99 .99 \\
\hline\(u\) & 10.1 \\
\hline
\end{tabular}

- An additional \(X\) and \(Y\) protein can bind.

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{\mathbf{- 1}} \mathbf{)}\) \\
\hline\(b\) & 100.98 .98 \\
\hline\(u\) & 10.2 \\
\hline
\end{tabular}

- An \(X^{\prime}\) and \(Y^{\prime}\) protein can unbind on channel \(u\)

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\mathbf{(s}^{\mathbf{- 1}} \mathbf{)}\) \\
\hline\(b\) & 100.99 .99 \\
\hline\(u\) & 10.1 \\
\hline
\end{tabular}

- Eventually...

\section*{Binding: \(X+Y_{u} \leftrightarrow^{\mathrm{b}} X^{\prime} Y^{\prime}\)}
\begin{tabular}{|l|l|}
\hline reaction & propensity \(\left(\mathbf{s}^{\mathbf{1}} \mathbf{)}\right.\) \\
\hline\(b\) & 100.3 .3 \\
\hline\(u\) & 10.97 \\
\hline
\end{tabular}

- At equilibrium when \(\operatorname{rate}(b) \times[X][Y] \approx \operatorname{rate}(u) \times(u)\left(\left[X^{\prime}\right]\left[Y^{\prime}\right]\right)\)

\section*{Binding: \(X+Y_{-b} \leftrightarrow^{+\mathrm{b}} X^{\prime} Y^{\prime}\)}

- At equilibrium: \(100 \mathrm{~s}^{-1} \cdot[X][Y]=10 \mathrm{~s}^{-1} \cdot\left[X^{\prime} Y^{\prime}\right]\)
- Approximately \(3 \cdot X\) and \(97 \cdot X^{\prime} Y^{\prime}\)

\title{
Programming the Immune System
}

\author{
Neil Dalchau, Luca Cardelli \\ Leonard Goldstein, Tim Elliott, \\ Joern Werner \& Andrew Phillips
}

\section*{Programming the Immune System}

\section*{Understanding What to Program}

\section*{MHC: A Biological Virus Scanner}

©2005 from Immunobiology, Sixth Edition by Janeway et al. Reproduced by permission of Garland Science/Taylor \& Francis LLC.

\section*{MHC: A Biological Virus Scanner}
©2005 from Immunobiology, Sixth Edition by Janeway et al.
Reproduced by permission of Garland Science/Taylor \& Francis LLC.

\section*{T lymphocytes targeting a cancer cell}

\section*{MHC I Structure}
- Interaction of MHC I with peptide

\section*{Tapasin affects relative presentation}

©2005 from Immunobiology, Sixth Edition by Janeway et al.
Reproduced by permission of Garland Science/Taylor \& Francis LLC.

\section*{Individual-based model}

\section*{Reaction-based model}

\section*{Principle of peptide filtering}

A single peptide-MHC complex
Competition between unbinding and egress

\[
P(\text { unbind })=\frac{u_{i}}{u_{i}+e}
\]
\[
P(\text { egress })=\frac{e}{u_{i}+e}
\]

\section*{Principle of peptide filtering}

Multiple peptide-MHC complexes
Determine expected number of egressed complexes

\section*{Principle of peptide optimisation}

\section*{Populations of multiple peptide-MHC complexes}

\(O\left(M e P_{i}\right)=\frac{\left[M e P_{i}\right]^{*}}{\sum_{k}\left[M e P_{k}\right]^{*}}\)

\section*{Peptide optimisation with tapasin}
\[
\begin{aligned}
& \\
& {\left[M e P_{i}\right]^{*} }=N_{i} \frac{\left(u_{T} v\right)}{u_{i} q+\left(u_{T} v\right)} \frac{e}{u_{i}+e} \\
& N_{i} \frac{x}{u_{i}+x} \frac{e}{u_{i}+e} \\
& O\left(M e P_{i}\right) \stackrel{e}{\text { Peptide }} \begin{array}{l}
\text { unbinding } \\
\text { unbinding }
\end{array} \\
& \sum_{k}\left[M e P_{k}\right]_{i}^{*}
\end{aligned}
\]

\section*{ODE model}
\[
\begin{aligned}
\frac{d[M]}{d t} & =\sum_{i} u_{i}\left[M P_{i}\right]+u_{T}[T M]+g_{M} \\
& -\left(b \sum_{i}\left[P_{i}\right]+b_{T}[T]+d_{M}\right)[M] \\
\frac{d[T]}{d t} & =u_{T}[T M]+g_{T}+u_{T} v \sum_{i}\left[T M P_{i}\right]-\left(b_{T}[M]+d_{T}\right)[T]
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d\left[M P_{i}\right]}{d t}=b[M]\left[P_{i}\right]+u_{T} v\left[T M P_{i}\right]-\left(u_{i}+e\right)\left[M P_{i}\right] \\
& \frac{d[T M]}{d t}
\end{aligned}=b_{T}[M][T]+q \sum_{i} u_{i}\left[T M P_{i}\right]-\left(u_{T}+c \sum_{i}\left[P_{i}\right]\right)[T M]
\]
\[
\begin{equation*}
\frac{d\left[T M P_{i}\right]}{d t}=b a[T M]\left[P_{i}\right]-\left(u_{i} q+u_{T} v\right)\left[T M P_{i}\right] \tag{5}
\end{equation*}
\]
\[
\frac{d\left[P_{i}\right]}{d t}=u_{i}\left[M P_{i}\right]+u_{i} q\left[T M P_{i}\right]+g_{i}
\]
\[
\begin{equation*}
-\left(b[M]+c[T M]+d_{P}\right)\left[P_{i}\right] \tag{6}
\end{equation*}
\]
\[
\begin{equation*}
\frac{d\left[M e P_{i}\right]}{d t}=e\left[M P_{i}\right]-u_{i}\left[M e P_{i}\right] \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
\frac{d[M e]}{d t}=\sum_{i} u_{i}\left[M e P_{i}\right]-d_{M e}[M e] \tag{8}
\end{equation*}
\]
\[
\begin{align*}
& \varnothing \underset{d_{M}}{\stackrel{g_{M}}{\rightleftarrows}} M \\
& \varnothing \underset{d_{T}}{\stackrel{g_{T}}{\rightleftarrows}} T \\
& M+T \underset{u_{T}}{\stackrel{b_{T}}{\rightleftarrows}} T M \tag{2}\\
& M e \xrightarrow{d_{M e}} \varnothing \\
& \varnothing \underset{d_{P}}{\stackrel{g_{i}}{\rightleftarrows}} P_{i} \tag{3}\\
& M+P_{i} \underset{u_{i}}{\stackrel{b}{\rightleftarrows}} M P_{i} \\
& T M+P_{i} \underset{u_{i} \cdot q}{\stackrel{c}{\rightleftarrows}} T M P_{i} \tag{6}\\
& T M P_{i} \xrightarrow{u_{T} \cdot v} T+M P_{i} \\
& M P_{i} \xrightarrow{e} \quad M e P_{i}
\end{align*}
\]

\section*{ODE analysis of peptide filtering}
\[
\left[M e P_{i}\right]^{*}=\frac{1}{u_{i}} \frac{e}{u_{i}+e}\left(b[M]^{*}+\frac{x}{u_{i}+x} c[T M]^{*}\right)\left[P_{i}\right]^{*}
\]
\[
\left.[T M]^{*} \gg[M]^{*}\right]\left[P_{i}\right]^{*} \approx g_{i} / d_{P}
\]
\[
\left[M e P_{i}\right]^{*} \approx \begin{array}{ccccc}
C & g_{i} & \frac{x}{u_{i}+x} & \frac{e}{u_{i}+e} & \frac{1}{u_{i}} \\
& \text { Supply } & \text { Tapasin } & \text { ER } & \text { Surface }
\end{array}
\]
\[
{ }_{13} x=u_{T} v / q \quad C=c[T M]^{*} / d_{P}
\]

\section*{ODE analysis of peptide optimisation}

\[
\begin{aligned}
\frac{\left[M e P_{i}\right]^{*}}{\sum_{k}\left[M e P_{k}\right]^{*}} & =\frac{g_{i} /\left(u_{i}\left(u_{i}+e\right)\right)}{\sum_{k} g_{k} /\left(u_{k}\left(u_{k}+e\right)\right)} \\
& \xrightarrow{e, x \rightarrow 0} \frac{g_{i} / u_{i}^{2}}{\sum_{k} g_{k} / u_{k}^{2}}
\end{aligned}
\]

\[
\begin{aligned}
\frac{\left[M e P_{i}\right]^{*}}{\sum_{k}\left[M e P_{k}\right]^{*}} & =\frac{g_{i} /\left(u_{i}\left(u_{i}+e\right)\left(u_{i}+x\right)\right)}{\sum_{k} g_{k} /\left(u_{k}\left(u_{k}+e\right)\left(u_{k}+x\right)\right)} \\
& \xrightarrow{e, x \rightarrow 0} \frac{g_{i} / u_{i}^{3}}{\sum_{k} g_{k} / u_{k}^{3}}
\end{aligned}
\]

\section*{Peptide optimisation over time}

\section*{Three representative peptides \(\mathrm{P}_{\text {low }}, \mathrm{P}_{\text {med }}, \mathrm{P}_{\text {high }}\)}

\section*{Model Parameters}
\begin{tabular}{lcccc}
Description & Parameter & Measured & Range & \(M_{b}\) \\
\hline Production of tapasin in the ER & \(g_{T}\) & & Fixed & \\
Degradation of tapasin in the ER & \(d_{T}\) & & \(10^{-6}-10^{-2}\) & \(1.726 \times 10^{-3}\) \\
Production of MHC in the ER & \(g_{M}\) & & Fixed & \\
Degradation of MHC in the ER & \(d_{M}\) & \(2-3 \times 10^{-4} \mathrm{~s}^{-1}[11,12]\) & \(10^{-6}-10^{-1}\) & \(7.989 \times 10^{-5}\) \\
Degradation of MHC at the cell surface & \(d_{M e}\) & \(2.4 \times 10^{-4} \mathrm{~s}^{-1}[6]\) & \(10^{-6}-10^{-1}\) & \(9.329 \times 10^{-5}\) \\
Degradation of peptides in the ER & \(d_{p}\) & \(0.13 \mathrm{~s}^{-1}[5]\) & Fixed & \(1.3 \times 10^{-1}\) \\
Binding of tapasin to MHC & \(b_{T}\) & & \(10^{-11}-10^{-5}\) & \(1.663 \times 10^{-9}\) \\
Unbinding of tapasin from empty MHC & \(u_{T}\) & & \(10^{-6}-10^{-1}\) & \(1.185 \times 10^{-6}\) \\
Binding of peptide to tapasin-bound MHC & \(c\) & & \(10^{-8}-10^{-2}\) & \(8.303 \times 10^{-8}\) \\
Effect of tapasin on peptide-MHC unbinding & \(q\) & & \(1-10^{5}\) & \(2.104 \times 10^{4}\) \\
Effect of peptide on tapasin-MHC unbinding & \(v\) & & \(1-10^{3}\) & \(9.363 \times 10^{2}\) \\
Binding of peptide to empty MHC & \(b_{B 4402}\) & \(0.2-2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}[11,13]\) & \(10^{-11}-10^{-5}\) & \(3.177 \times 10^{-11}\) \\
& \(b_{B 2705}\) & & \(10^{-11}-10^{-5}\) & \(1.945 \times 10^{-9}\) \\
& \(b_{B 4405}\) & & \(10^{-11}-10^{-5}\) & \(4.367 \times 10^{-9}\) \\
Egression of loaded MHC from the ER & \(e\) & & \(10^{-4}-1\) & \(1.142 \times 10^{-1}\) \\
Unbinding of peptides from MHC & \(u_{\text {low }}\) & \(7.8 \times 10^{-6}-4 \times 10^{-3} \mathrm{~s}^{-1}[13]\) & \(10^{-8}-10^{-2}\) & \(8.764 \times 10^{-4}\) \\
Active transport of peptides into ER & \(u_{\text {medium }}\) & & \(10^{-8}-10^{-2}\) & \(5.658 \times 10^{-6}\) \\
& \(u_{\text {high }}\) & & \(10^{-8}-10^{-2}\) & \(4.177 \times 10^{-7}\) \\
& \(g_{\text {low }}\) & \(1.3-3.3 \times 10^{-6} \mathrm{M} \mathrm{s}{ }^{-1}[5]\) & \(1-10^{5}\) & \(2.093 \times 10^{4}\) \\
& \(g_{\text {medium }}\) & & \(1-10^{5}\) & \(1.759 \times 10^{4}\) \\
& \(g_{\text {high }}\) & 136 & \(1-10^{5}\) & \(1.064 \times 10^{4}\)
\end{tabular}

\section*{Fitting Parameters to Data}

\section*{Peptide optimisation over time}

\section*{Separate plots for different MHC complexes}

\section*{Peptide optimisation at steady-state}

\section*{A SIINFEKL peptide and 2 background peptides}

\section*{Optimisation of HIV peptides}
- Chop up protein sequence of HIV into peptides
- Predict presentation from peptide off-rates and abundance.

\section*{Summary}
- A kinetic model of MHC class I antigen presentation interactions with the chaperone molecule tapasin.
- Principle of peptide filtering
quantify peptide optimisation as a function of peptide supply and peptide unbinding rates.
- Tapasin improves peptide optimisation by accelerating peptide unbinding.
- Peptide optimisation across MHC class I alleles can be explained by differences in peptide binding.

\section*{Scientific Challenges}
- Predict the immune response to a given virus

- Towards a virtual immune system

\section*{Future Work}
- Constrain peptide editing model with additional experimental results
- Predict effects of tapasin for different alleles (HLAB8, H2-K \({ }^{\text {b }}\)
- Include additional chaperones and MHC conformational changes.
- Unify peptide competition in the ER, presentation at the cell surface and T -cell activation for \(\mathrm{H} 2-\mathrm{K}^{b}\)

\section*{Future Work}

\section*{Predicting the adaptive immune response}

\section*{Tutorial Summary}
- Programming DNA Computers
- Microsoft Research: Matthew Lakin, Luca Cardelli
- University of Munich: Simon Youssef
- Programming Genetic Devices
- Microsoft Research: Neil Dalchau
- University of Edinburgh: Michael Pedersen
- University of Cambridge: James Brown
- Programming the Immune System
- Microsoft Research: Neil Dalchau, Luca Cardelli
- University of Cambridge: Leonard Goldstein
- University of Southampton: Tim Elliott, Joern Werner

\section*{Thanks}

\section*{MSR Computational Science Lab}

\section*{Focus}

Research and development of novel computational approaches to tackle fundamental problems in science in areas of societal importance

\section*{Groups}
- Computational Biology methods to understand how living things work
- Computational Ecology \& Environmental Science methods to understand the structure, function and future of Life on Earth
- Technology \& Tools Group Implement next generation of software tools for science```

