Tutorial on Timed Systems Verification

James Worrell

Oxford University Computing Laboratory

MoVeP, July 2010

The Classical Theory of Verification

- Qualitative (order-theoretic), rather than quantitative (metric).
- ▶ Time is modelled as the naturals $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- Note: focus on linear time (as opposed to branching time).

A Simple Example

'P occurs infinitely often'

Specification and Verification

Assume the system is modelled by an automaton M. The specification can be given by:

▶ A Linear Temporal Logic (LTL) formula θ .

$$\theta ::= P \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \neg \theta \mid \theta_1 \mathcal{U} \theta_2 \mid \theta_1 \mathcal{S} \theta_2$$

For example, $\Box (REQ \rightarrow \Diamond ACK)$.
Verification is then model checking: $M \models \theta$?

A First-Order Logic (FO(<)) formula φ.

$$\varphi ::= x < y \mid P(x) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall x \varphi \mid \exists x \varphi$$

For example, $\forall x (REQ(x) \rightarrow \exists y (x < y \land ACK(y)))$.
Verification is again model checking: $M \models \varphi$?

Another Example

'P holds at every even position (and may or may not hold at odd positions)'

- ▶ It turns out it is impossible to capture this requirement using LTL or FO(<).
- ► LTL and FO(<) can however capture the specification: 'Q holds precisely at even positions':

$$Q \wedge \Box (Q \rightarrow \bigcirc \neg Q) \wedge \Box (\neg Q \rightarrow \bigcirc Q)$$

- So one way to capture the original specification would be to write: 'Q holds precisely at even positions and $\Box(Q \to P)$ '.
- Finally, need to existentially quantify Q out:

$$\exists Q \ (Q \ holds \ precisely \ at \ even \ positions \ and \ \Box \ (Q \to P))$$

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

$$\varphi ::= \mathbf{X} < \mathbf{y} \mid \mathbf{P}(\mathbf{X}) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \forall \mathbf{X} \varphi \mid \exists \mathbf{X} \varphi \mid \forall \mathbf{P} \varphi \mid \exists \mathbf{P} \varphi$$

Theorem (Büchi 1960)

Any MSO(<) formula φ can be effectively translated into an equivalent automaton A_{φ} .

Corollary (Church 1960)

The model-checking problem for automata against MSO(<) specifications is decidable:

$$M \models \varphi \quad iff \quad L(M) \cap L(A_{\neg \varphi}) = \emptyset$$

Algorithmic Complexity

UNDECIDABLE

- Most problems in Computer Science sit within PSPACE.
- Hierarchy extends much beyond:

► EXPSPACE: 2^{p(n)}

▶ 2EXPSPACE: 2^{2^{p(n)}}

▶ 3EXPSPACE: 2^{2^{2p(n)}}

•

► ELEMENTARY: $\bigcup_{k \in \mathbb{N}} \{k \text{EXPSPACE}\}$

► NON-ELEMENTARY: 2^{2²}

► NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 2^{2²}, ...

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)

FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;

Gabbay, Pnueli, Shelah, Stavi 1980)

LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)

LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

"The paradigmatic idea of the automata-theoretic approach to verification is that we can compile high-level logical specifications into an equivalent low-level finite-state formalism."

Moshe Vardi

Theorem

Automata are closed under all Boolean operations. Moreover, the language inclusion problem ($L(A) \subseteq L(B)$?) is PSPACE-complete.

The Classical Theory: Expressiveness

The Classical Theory: Complexity

UNDECIDABLE

A Login Protocol

SPECIFICATION: $\Box(pw_wrong \longrightarrow \Box_{[0,10)} \neg restart)$

[...] When power is applied, a single '1' bit is loaded into the first stage of both the minutes and hours registers. To accomplish this, a momentary low reset signal is sent to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at pin 8 of the minutes registers. At the same time, a high level is applied to the data input lines of both minutes and hours registers at pin 1. A single positive going clock pulse is generated at the end of the reset signal which loads a high level into the first stage of the minutes register. The rising edge of first stage output at pin 3 advances the hours and a single bit is also loaded into the hours register. Power should remain off for 3 seconds before being re-applied to allow the filter and timing capacitors to discharge. [...]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

[...] When power is applied, a single '1' bit is loaded into the first stage of both the minutes and hours registers. To accomplish this, a momentary low reset signal is sent to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at pin 8 of the minutes registers. At the same time, a high level is applied to the data input lines of both minutes and hours registers at pin 1. A single positive going clock pulse is generated at the end of the reset signal which loads a high level into the first stage of the minutes register. The rising edge of first stage output at pin 3 advances the hours and a single bit is also loaded into the hours register. Power should remain off for 3 seconds before being re-applied to allow the filter and timing capacitors to discharge. [...]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

Timed Systems

Timed systems occur in:

- Hardware circuits
- Communication protocols
- Cell phones
- Plant controllers
- Aircraft navigation systems

In many instances, it is **crucial** to accurately model the timed behaviour of the system.

From Qualitative to Quantitative

"Lift the classical theory to the real-time world." Boris Trakhtenbrot, LICS 1995

Timed Automata

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford during his PhD thesis under David Dill:

- Rajeev Alur, David L. Dill: Automata For Modeling Real-Time Systems. ICALP 1990: 322-335
- Rajeev Alur, David L. Dill: A Theory of Timed Automata. TCS 126(2): 183-235, 1994

Timed Words

▶ A *timed word* is a finite or infinite sequence of *timed events*:

$$\langle (t_0, a_0), (t_1, a_1), (t_2, a_2), (t_3, a_3), \ldots \rangle$$

Timed Automata

Timed automata are language acceptors for timed words

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)

Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

A cannot be complemented:

There is no timed automaton *B* with $L(B) = \overline{L(A)}$.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli \sim 1990] is a central quantitative specification formalism for timed systems.

MTL = LTL + timing constraints on operators:

$$\Box(\boxminus_{[0,1]}PEDAL \rightarrow \Diamond_{[5,10]}BRAKE)$$

Widely cited and used (over seven hundred papers according to scholar.google.com!).

Unfortunately:

Theorem (Alur & Henzinger 1992)

MTL satisfiability and model checking are undecidable over $\mathbb{R}_{\geq 0}$. (Decidable but non-primitive recursive under certain semantic restrictions [Ouaknine & Worrell 2005].)

Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<) by the unary function +1.

For example, $\Box(PEDAL \rightarrow \Diamond_{[5,10]} BRAKE)$ becomes

$$(PEDAL(x) \rightarrow \exists y (x + 5 \le y \le x + 10 \land BRAKE(y)))$$

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{>0}$.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model checking are undecidable over $\mathbb{R}_{>0}$.

The Real-Time Theory: Expressiveness

Key Stumbling Blocks

Theorem (Alur & Dill 1990)

Language inclusion is undecidable for timed automata.

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than MTL over $\mathbb{R}_{\geq 0}$.

Part II: Negative Results

Undecidability

Theorem (Alur & Dill 1990)

Language inclusion is undecidable for timed automata.

Proof.

- ▶ Encode halting computations of two-counter machine M as timed language L(M).
- ▶ Define timed automaton A accepting the complement of L(M).
- A is universal if and only if L(M) has no halting computation.

Undecidability

Suppose that at time 3, the current tape contents of M is $\langle aabcab \rangle$.

Undecidability

To correctly propagate the tape contents we require that every event in the current time interval have a matching event one time unit later.

A accepts all timed words that violate this property

Backward Propagation

This not sufficient: we have only enforced *forward* propagation of events.

Observations

The undecidability proof required

- Dense Time
- Infinite Precision
- ► Two clocks
- Timed words of unbounded duration

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than any temporal logic with finitely many modalities definable in FO(<,+1) over \mathbb{R} .

Build your own temporal logic:

- $(X \mathcal{U} Y)(t) \equiv \exists s > t (Y(s) \land \forall u (t < u < s \rightarrow X(u)))$
- $(X S Y)(t) \equiv \exists s < t (Y(s) \land \forall u (s < u < t \rightarrow X(u)))$
- $C_n(X)(t) \equiv \exists x_1 \cdots \exists x_n$ $(t < x_1 < \cdots < x_n < t + 1 \land X(x_1) \land \cdots \land X(x_n))$

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)

Let TL be a temporal logic with **finitely many modalities** definable in FO(<,+1). Then TL is strictly less expressive than FO(<,+1).

- ▶ One free predicate variable P.
- ▶ Four **simple formulas** P(t), $\neg P(t)$, True and False.
- ▶ Model \mathcal{M}_k interprets P as \mathbb{N}/k .
- ▶ In \mathcal{M}_k every formula $\varphi(t)$ of FO(<,+1) is equivalent to a simple formula.

Inexpressiveness

- ► TL-modality $O(X_1, ..., X_n)$ interpreted by FO(<,+1)-formula $\psi(X_1, ..., X_n, t)$.
- ▶ Semantics of ψ in \mathcal{M}_k defined by **truth table**.

$$X_1 \cdots X_n \psi$$
 $P \cdots True \neg P$

- ▶ There exists $k \neq \ell$ such that any TL-formula is equivalent to the same simple formula on both \mathcal{M}_k and \mathcal{M}_ℓ .
- ▶ But C_n distinguishes \mathcal{M}_k from \mathcal{M}_ℓ for some n.

Part II: One-Clock Automata

Mind the Gap

Timed automata language inclusion: $L(B) \stackrel{?}{\subseteq} L(A)$

• A has no clocks: PSPACE-Complete

[Alur et al. 90]

• A has two clocks: Undecidable

[Alur, Dill 94]

Mind the Gap

Timed automata language inclusion: $L(B) \stackrel{?}{\subseteq} L(A)$

• A has no clocks: PSPACE-Complete

[Alur *et al.* 90]

• A has *one* clock: Decidable — in fact Non-Primitive Recursive

• A has two clocks: Undecidable

[Alur, Dill 94]

Mind the Gap

Timed automata language inclusion: $L(B) \stackrel{?}{\subseteq} L(A)$

• A has no clocks: PSPACE-Complete

[Alur *et al.* 90]

- A has *one* clock: Decidable in fact Non-Primitive Recursive
- A has two clocks: Undecidable

[Alur, Dill 94]

This result is somewhat surprising: in most computational structures, deciding language inclusion normally uses:

$$L(B) \subseteq L(A) \iff L(B) \cap \overline{L(A)} = \emptyset$$

However, one-clock timed automata cannot be complemented . . .

Some Applications

- Hardware and software systems are often described via high-level **functional specifications**, describing their intended global behavior.
- Functional specifications are often given as **finite-state machines**. A proposed implementation *IMP* meets its specification *SPEC* iff

$$L(IMP) \subseteq L(SPEC)$$
.

Finite-state machines are often used as specifications of systems:

IMP meets
$$SPEC$$
 iff $L(IMP) \subseteq L(SPEC)$

- Our work enables us to handle **timed** functional specifications: **timed automata with a single clock**.
- (Further potential applications to verification described later on.)

• Reduce the language inclusion question $L(B) \stackrel{?}{\subseteq} L(A)$ to a **reachability** question on an infinite graph \mathcal{H} .

- Reduce the language inclusion question $L(B) \stackrel{?}{\subseteq} L(A)$ to a **reachability** question on an infinite graph \mathcal{H} .
- Construct a compatible **well-quasi-order** \leq on \mathcal{H} :
 - Whenever $W \leq W'$: if W is safe, then W' is safe.
 - Any infinite sequence W_1, W_2, W_3, \dots eventually saturates: there exists i < j such that $W_i \preceq W_j$.

- Reduce the language inclusion question $L(B) \stackrel{?}{\subseteq} L(A)$ to a **reachability** question on an infinite graph \mathcal{H} .
- Construct a compatible **well-quasi-order** \leq on \mathcal{H} :
 - Whenever $W \leq W'$: if W is safe, then W' is safe.
 - Any infinite sequence W_1, W_2, W_3, \dots eventually saturates: there exists i < j such that $W_i \leq W_j$.
- Explore \mathcal{H} , looking for unsafe nodes. The search must eventually terminate.

- Reduce the language inclusion question $L(B) \stackrel{?}{\subseteq} L(A)$ to a **reachability** question on an infinite graph \mathcal{H} .
- Construct a compatible **well-quasi-order** \leq on \mathcal{H} :
 - Whenever $W \leq W'$: if W is safe, then W' is safe.
 - Any infinite sequence W_1, W_2, W_3, \dots eventually saturates: there exists i < j such that $W_i \leq W_j$.
- Explore \mathcal{H} , looking for unsafe nodes. The search must eventually terminate.
- For simplicity, we focus on **universality**: $L(A) \stackrel{?}{=} \mathbf{TT}$

Higman's Lemma

Let $\Lambda = \{a_1, a_2, \dots, a_n\}$ be an alphabet.

Let \leq be the **subword order** on Λ^* , the set of finite words over Λ .

Ex.: HIGMAN ≼ HIGHMOUNTAIN

Then \leq is a well-quasi-order on Λ^* :

Any infinite sequence of words W_1, W_2, W_3, \dots must eventually have two words $W_i \leq W_j$, with i < j.

G. Higman, "Ordering by divisibility in abstract algebras."

Proceedings of the London Mathematical Society, vol. 2, 1952.

Higman's Lemma

Let $\Lambda = \{a_1, a_2, \dots, a_n\}$ be an alphabet.

Let \leq be the **subword order** on Λ^* , the set of finite words over Λ .

Ex.: HIGMAN ≼ HIGHMOUNTAIN

Then \leq is a well-quasi-order on Λ^* :

Any infinite sequence of words W_1, W_2, W_3, \dots must eventually have two words $W_i \leq W_j$, with i < j.

G. Higman, "Ordering by divisibility in abstract algebras."

Proceedings of the London Mathematical Society, vol. 2, 1952.

- A state of A is a pair (s, v):
 - s is a location.
 - $-v \in \mathbb{R}^+$ is the value of clock x.
- A **configuration** of A is a finite set of states.

- A state of A is a pair (s, v):
 - s is a location.
 - $-v \in \mathbb{R}^+$ is the value of clock x.
- A **configuration** of A is a finite set of states.

- A state of A is a pair (s, v):
 - s is a location.
 - $-v \in \mathbb{R}^+$ is the value of clock x.
- \bullet A **configuration** of A is a finite set of states.

- A state of A is a pair (s, v):
 - s is a location.
 - $-v \in \mathbb{R}^+$ is the value of clock x.
- \bullet A **configuration** of A is a finite set of states.

Every timed trace u gives rise to a configuration of A.

Ex.: $u = \langle 0.5, a, 0.2, b, 0.4, c \rangle$ leads to $\{(s_5, 0.6), (s_6, 0.4)\}.$

Bisimilar Configurations

If C is a configuration, let A[C] be A 'started' in configuration C.

Definition. A relation \mathcal{R} on configurations is a **bisimulation** if, whenever $C_1 \mathcal{R} C_2$, then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+ \text{ such that}$ if $A[C_1] \xrightarrow{t_1, a} A[C_1']$, then $A[C_2] \xrightarrow{t_2, a} A[C_2']$, and $C_1' \not\subset C_2'$.
- Vice-versa.

Bisimilar Configurations

If C is a configuration, let A[C] be A 'started' in configuration C.

Definition. A relation \mathcal{R} on configurations is a **bisimulation** if, whenever $C_1 \mathcal{R} C_2$, then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+ \text{ such that}$ if $A[C_1] \xrightarrow{t_1, a} A[C_1']$, then $A[C_2] \xrightarrow{t_2, a} A[C_2']$, and $C_1' \not\subset C_2'$.
- Vice-versa.

We say that C_1 and C_2 are **bisimilar**, written $C_1 \sim C_2$, if there exists some bisimulation relating them.

Bisimilar Configurations

If C is a configuration, let A[C] be A 'started' in configuration C.

Definition. A relation \mathcal{R} on configurations is a **bisimulation** if, whenever $C_1 \mathcal{R} C_2$, then

- $\forall a \in \Sigma, \forall t_1 \in \mathbb{R}^+, \exists t_2 \in \mathbb{R}^+ \text{ such that}$ if $A[C_1] \xrightarrow{t_1, a} A[C_1']$, then $A[C_2] \xrightarrow{t_2, a} A[C_2']$, and $C_1' \not\subset C_2'$.
- Vice-versa.

We say that C_1 and C_2 are **bisimilar**, written $C_1 \sim C_2$, if there exists some bisimulation relating them.

Theorem. If $C_1 \sim C_2$, then

 $A[C_1]$ is universal $\iff A[C_2]$ is universal.

$$C_1 = \{(s_0, 0.5)\} \nsim C_2 = \{(s_0, 1.3)\}.$$

$$C_1$$
: $S_0 \mid 0.5$

$$C_2$$
: s_0 | 1.3

$$C_1 = \{(s_0, 0.5)\} \nsim C_2 = \{(s_0, 1.3)\}.$$

$$C_1$$
: $S_0 \mid 0.5$

$$A: \longrightarrow \mathscr{S}_0 \xrightarrow{x>1? \Sigma} \mathscr{S}_1 \longrightarrow \Sigma$$

$$C_1 = \{(s_0, 0.5)\} \sim C_2 = \{(s_0, 1.3)\}.$$

$$C_1$$
: s_0 0.5 C_2 : s_0 1.3

$$A: \longrightarrow \mathscr{S}_0 \xrightarrow{x>1? \Sigma} \mathscr{S}_1 \longrightarrow \Sigma$$

 $A[C_2]$ is universal, but $A[C_1]$ rejects $\langle 0, a \rangle$.

$$A: \longrightarrow \bigcirc S_0 \longrightarrow \underbrace{x < 1 \lor x > 2?} \Sigma \longrightarrow \bigcirc S_1) \Sigma$$

$$A: \longrightarrow \bigcirc S_0 \longrightarrow \xrightarrow{x < 1 \lor x > 2?} \Sigma \longrightarrow \bigcirc S_1 \longrightarrow \Sigma$$

 $A[C_2]$ is universal, but $A[C_1]$ rejects $\langle 0.5, a \rangle$.

$$A: \longrightarrow \mathscr{S}_0 \xrightarrow{x < 1 \lor x > 2?} \Sigma \longrightarrow \mathscr{S}_1 \longrightarrow \Sigma$$

 $A[C_2]$ is universal, but $A[C_1]$ rejects $\langle 0.5, a \rangle$.

What about ...

What about ...

They **are** bisimilar: $C_1 \sim C_2$.

Constructing a Decidable Bisimulation Relation

Let $K \in \mathbb{N}$ be the largest constant appearing in clock constraints of A.

Theorem. Let C and C' be configurations of A.

If there exists a bijection $f: C \to C'$ that preserves

- locations: $f(s, v) = (s', v') \implies s = s'$,
- integer parts of clock x, up to K:

$$f(s,v) = (s',v') \implies ((\lceil v \rceil = \lceil v' \rceil \land \lfloor v \rfloor = \lfloor v' \rfloor) \lor v,v' > K),$$

• the ordering of the fractional parts of clock x:

$$f(s_i, v_i) = (s'_i, v'_i) \implies (v_i < v_j \iff v'_i < v'_j),$$

then $C \sim C'$.

Constructing a Decidable Bisimulation Relation

- Let K be the largest constant appearing in clock constraints of A.
- Let $REG = \{\{0\}, (0,1), \{1\}, (1,2), \dots, \{K\}, (K,\infty)\}$ be the collection of 'one-dimensional regions' of A.
- Let $S = \{s_0, s_1, \dots, s_n\}$ be the set of locations of A.
- Let $\Lambda = S \times REG$.
- Let C be a configuration of A. For simplicity, assume all the fractional parts of states in C are distinct.
- Note that each state in C has a unique matching letter in Λ .
- Encode C as a word $H(C) \in \Lambda^*$, ordered by increasing fractional parts of states.

Consider the configuration C:

Consider the configuration C:

Consider the configuration C:

We encode C as $H(C) = b \dots$

Consider the configuration C:

We encode C as $H(C) = bc \dots$

Consider the configuration C:

We encode C as H(C) = bca...

Consider the configuration C:

We encode C as $H(C) = \operatorname{bcad} \dots$

Consider the configuration C:

We encode C as H(C) = bcada...

Consider the configuration C:

We encode C as H(C) =bcadaa

Consider the configuration C:

We encode C as H(C) = bcadaa.

From Bisimulation to Simulation

Theorem. If H(C) = H(C'), then $C \sim C'$.

From Bisimulation to Simulation

Theorem. If H(C) = H(C'), then $C \sim C'$.

Corollary. If H(C) = H(C'), then

A[C] is universal $\iff A[C']$ is universal.

From Bisimulation to Simulation

Theorem. If H(C) = H(C'), then $C \sim C'$.

Corollary. If H(C) = H(C'), then

A[C] is universal $\iff A[C']$ is universal.

Corollary. If $H(C) \preceq H(C')$, then

A[C] is universal $\implies A[C']$ is universal.

The Algorithm: Recapitulation

- Reduce the universality question $L(A) \stackrel{?}{=} \mathbf{TT}$ to a reachability question on an infinite graph of words.
- The subword order \leq on this graph is a compatible well-quasi-order:
 - Whenever $H(C) \leq H(C')$: if A[C] is universal, then A[C'] is universal.
 - Any infinite sequence $H(C_1)$, $H(C_2)$, $H(C_3)$, ... eventually saturates: there exists i < j such that $H(C_i) \preceq H(C_j)$.
- Explore the graph, looking for a word/configuration from which A cannot perform some event. The search must eventually terminate.

Timed Automata Language Inclusion

Theorem. The language inclusion problem $L(B) \stackrel{?}{\subseteq} L(A)$ is **decidable**, provided A has at most one clock.

The complexity is **non-primitive recursive**.

Non-primitive recursive complexity lower bound is established by reduction from reachability problem for lossy channel systems.

Emptiness/ Reachability

UNDECIDABLE

NON-PRIMITIVE RECURSIVE NON-ELEMENTARY (PRIMITIVE RECURSIVE) **ELEMENTARY FUNCTIONS 3EXPTIME 2EXPTIME EXPTIME PSPACE** NP P NLOG-SPACE

Universality/ Language Inclusion

Emptiness/ Reachability **UNDECIDABLE**

Universality/ Language Inclusion

0 clocks: NLOGSPACE-Complete

Emptiness/ Reachability

UNDECIDABLE

Universality/ Language Inclusion

0 clocks: NLOGSPACE-Complete

0 clocks: PSPACE-Complete

UNDECIDABLE Emptiness/ Universality/ Reachability Language Inclusion NON-PRIMITIVE RECURSIVE NON-ELEMENTARY (PRIMITIVE RECURSIVE) **ELEMENTARY FUNCTIONS 3EXPTIME 2EXPTIME EXPTIME PSPACE** 1 clock: NLOGSPACE-Complete NP P NLOG-SPACE 0 clocks: NLOGSPACE-Complete 0 clocks: PSPACE-Complete

UNDECIDABLE Emptiness/ Universality/ Reachability Language Inclusion NON-PRIMITIVE RECURSIVE NON-ELEMENTARY (PRIMITIVE RECURSIVE) **ELEMENTARY FUNCTIONS 3EXPTIME 2EXPTIME EXPTIME PSPACE** 1 clock: NLOGSPACE-Complete 1 clock: Non-Primitive Recursive NP P NLOG-SPACE 0 clocks: NLOGSPACE-Complete 0 clocks: PSPACE-Complete

Summary

- A single clock is surprisingly powerful ...
 - can capture simple timed functional specifications
 - can capture substantial fragments of MTL
 - ... yet still lives in a decidable world.
- Punctuality not *quite* as noxious as previously thought:
 - but it does take language inclusion from PSPACE to Non-Primitive Recursive!

Two Clocks: Configuration G_3

Two Clocks: Configuration G_4

Two Clocks: Configuration G_5

Part II: Future Work

- Efficient implementation:
 - Symbolic algorithms using better-quasi-orders?
 - Good conservative abstractions.
 - Counterexample-guided framework.
- Language inclusion when discounting the future and/or bounding time.
- Connections with lossy and insertion channel systems:
 - Logical characterization of the expressive power of one-clock timed alternating automata.

Part IV: Time-Bounded Verification

James Worrell

Oxford University Computing Laboratory

MOVEP, July 2010

A Long Time Ago, circa 2003...

Time-Bounded Language Inclusion

TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound $T \in \mathbb{N}$

Question: Is $L_T(A) \subseteq L_T(B)$?

- Inspired by Bounded Model Checking.
- Timed systems often have time bounds (e.g. timeouts), even if total number of actions is potentially unbounded.
- Universe's lifetime is believed to be bounded anyway...

Timed Automata and Metric Logics

- Unfortunately, timed automata cannot be complemented even over bounded time...
- Key to solution is to translate problem into logic: Behaviours of timed automata can be captured in MSO(<,+1) (in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).
- This reverses Vardi's 'automata-theoretic approach to verification' paradigm!

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975) *MSO(<) is undecidable over* [0, 1).

By contrast,

Theorem

- MSO(<) is decidable over N [Büchi 1960]</p>
- ► MSO(<) is decidable over Q, via [Rabin 1969]</p>

Finite Variability

Timed behaviours are modelled as flows (or signals):

Predicates must have finite variability:

Disallow e.g. Q:

Then:

Theorem (Rabinovich 2002)

MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem

For any fixed bounded time domain [0, T), the satisfiability and model-checking problems for MSO(<,+1), FO(<,+1), and MTL are all decidable, with the following complexities:

<i>MSO</i> (<,+1)	NON-ELEMENTARY
<i>FO</i> (<,+1)	NON-ELEMENTARY
MTL	EXPSPACE-complete

Theorem

MTL and FO(<,+1) are equally expressive over any fixed bounded time domain [0,T).

Theorem

Given timed automata A, B, and time bound $T \in \mathbb{N}$, the language inclusion problem $L_T(A) \subseteq L_T(B)$ is decidable and 2EXPSPACE-complete.

Time-Bounded Language Inclusion

- ▶ Let timed automata *A*, *B*, and time bound *T* be given.
- ▶ Define formula $\varphi_A^{acc}(\mathbf{W}, \mathbf{P})$ in MSO(<,+1) such that:

A accepts timed word $w \iff \varphi_A^{\rm acc}(\mathbf{W}, \mathbf{P})$ holds

where

- ▶ W encodes w
- ▶ **P** encodes a corresponding run of *A*.
- ▶ Define likewise $\varphi_B^{\rm acc}(\mathbf{W}, \mathbf{Q})$ for timed automaton B.
- ▶ Then $L_T(A) \subseteq L_T(B)$ iff:

$$\forall \mathbf{W} \, \forall \mathbf{P} \; (\varphi_{\mathcal{A}}^{\mathsf{acc}}(\mathbf{W}, \mathbf{P}) o \exists \mathbf{Q} \, \varphi_{\mathcal{B}}^{\mathsf{acc}}(\mathbf{W}, \mathbf{Q}))$$

holds over time domain [0, T).

This can be decided in 2EXPSPACE.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by 'vertical stacking'.

- Let φ be an MSO(<,+1) formula and let $T \in \mathbb{N}$.
- ▶ Construct an MSO(<) formula $\overline{\varphi}$ such that:

```
\varphi is satisfiable over [0, T) \iff \overline{\varphi} is satisfiable over [0, 1)
```

Conclude by invoking decidability of MSO(<).

From MSO(<,+1) to MSO(<)

Replace every:

$$\forall x \, \psi(x) \quad \text{by} \quad \forall x \, (\psi(x) \land \psi(x+1) \land \psi(x+2))$$

$$\begin{cases} x < y & \text{if } k_1 = k_2 \end{cases}$$

▶
$$x + k_1 < y + k_2$$
 by
$$\begin{cases} x < y & \text{if } k_1 = k_2 \\ \text{true} & \text{if } k_1 < k_2 \\ \text{false} & \text{if } k_1 > k_2 \end{cases}$$

- ightharpoonup P(x+k) by $P_k(x)$
- $\triangleright \forall P \psi \quad \text{bv} \quad \forall P_0 \forall P_1 \forall P_2 \psi$

Then φ is satisfiable over $[0,T) \iff \overline{\varphi}$ is satisfiable over [0,1).

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Complexity

Classical Theory

Time-Bounded Theory

UNDECIDABLE

Part IV: Conclusion

- For specifying and verifying real-time systems, the time-bounded theory is much better behaved than the real-time theory.
- Original motivation for this work was the time-bounded language inclusion problem for timed automata.
 We used logic as a tool to solve this problem.

Thank you for your attention!