
Tutorial on Timed Systems Verification

James Worrell

Oxford University Computing Laboratory

MoVeP, July 2010

The Classical Theory of Verification

Predicate

Logic

Automata

Logic

Temporal

I Qualitative (order-theoretic), rather than quantitative (metric).
I Time is modelled as the naturals N = {0,1,2,3, . . .}.
I Note: focus on linear time (as opposed to branching time).

A Simple Example

‘P occurs infinitely often’

P

�♦P
∀x ∃y (x < y ∧ P(y))

Specification and Verification
Assume the system is modelled by an automaton M.
The specification can be given by:
I A Linear Temporal Logic (LTL) formula θ.

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | θ1 U θ2 | θ1 S θ2

For example, �(REQ → ♦ACK).

Verification is then model checking: M |= θ ?

I A First-Order Logic (FO(<)) formula ϕ.

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x)→ ∃y (x < y ∧ ACK (y))).

Verification is again model checking: M |= ϕ ?

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

P P

I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅

Algorithmic Complexity

..

.

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

2EXPSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

I Most problems in Computer Science sit
within PSPACE.

I Hierarchy extends much beyond:
I EXPSPACE: 2p(n)

I 2EXPSPACE: 22p(n)

I 3EXPSPACE: 222p(n)

I . . .
I ELEMENTARY:

⋃
k∈N

{kEXPSPACE}

I NON-ELEMENTARY: 222·
··

n

︸ ︷︷ ︸
n

I NON-PRIMITIVE RECURSIVE:

Ackerman: 3, 4, 8, 2048, 222·
··

2

︸ ︷︷ ︸
2048

, . . .

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.
But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi
Theorem
Automata are closed under all Boolean operations. Moreover,
the language inclusion problem (L(A) ⊆ L(B) ?) is
PSPACE-complete.

The Classical Theory: Expressiveness

MSO(<)

FO(<)

automata ETLTLµ

LTLautomata
counter−free

The Classical Theory: Complexity

..

.

NLOGSPACE−complete
reachability

NON−ELEMENTARY
MSO(<) model checking

NON−ELEMENTARY
FO(<) model checking

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

A Login Protocol

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

SPECIFICATION: �(pw_wrong −→ �[0,10)¬restart)

[. . .] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . .]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

[. . .] When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.
[. . .]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

Timed Systems

Timed systems occur in:

I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I . . .

In many instances, it is crucial to accurately model the timed
behaviour of the system.

From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995

Timed Automata

x ≥10? pw_wrong

login_name

restart

restart

log_pw_wrong

pw_correct
START VALIDATE

LOG_ERRORDELAY

connectedx x

x 60?

x

x

<60?:=0

≥

:=0

<60?

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Words

I A timed word is a finite or infinite sequence of timed events:

〈(t0,a0), (t1,a1), (t2,a2), (t3,a3), . . .〉

t0

a
0 a

1
a
3a

2

t1 t2 t30 1 2 3

Timed Automata

Timed automata are language acceptors for timed words

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

A : //ONMLHIJK
@GF ECD

a

��
a

x :=0
//ONMLHIJK a

x=1?
//

@GF ECD
a

�� ONMLHIJKGFED@ABC
@GF ECD

a

��

1

L(A):

1

1

L(A):

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(�[0,1]PEDAL→ ♦[5,10] BRAKE)

I Widely cited and used (over seven hundred papers
according to scholar.google.com!).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Predicate Logic
The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.
For example, �(PEDAL→ ♦[5,10] BRAKE) becomes

(PEDAL(x)→ ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R≥0.

The Real-Time Theory: Expressiveness

FO(<,+1)

MTL

MSO(<,+1)

automata
timed

Key Stumbling Blocks

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Part II: Negative Results

Undecidability

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
Proof.

I Encode halting computations of two-counter machine M as
timed language L(M).

I Define timed automaton A accepting the complement of
L(M).

I A is universal if and only if L(M) has no halting
computation.

Undecidability

Suppose that at time 3, the current tape contents of M is
〈aabcab〉.

a a b c a b a a b c a b

3 54

1

To correctly propagate the tape contents we require that every
event in the current time interval have a matching event one
time unit later.

Undecidability

To correctly propagate the tape contents we require that every
event in the current time interval have a matching event one
time unit later.

A : //ONMLHIJK
@GF ECD

Σ

��
Σ

x :=0
//ONMLHIJKGFED@ABC
@GF ECD

Σ x 6=1?

��

A accepts all timed words that violate this property

Backward Propagation

This not sufficient: we have only enforced forward propagation
of events.

a a b c a ba

3 54

a b c a b d

1 1

A //ONMLHIJK
@GF ECD

Σ

��
a

x :=0
//ONMLHIJK b

y :=0
//ONMLHIJK
@GF ECD

Σ

��
d

x>1∧y<1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Observations

The undecidability proof required

I Dense Time

I Infinite Precision

I Two clocks

I Timed words of unbounded duration

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than any temporal logic
with finitely many modalities definable in FO(<,+1) over R.

Build your own temporal logic:

I (X U Y)(t) ≡ ∃s > t (Y (s) ∧ ∀u (t < u < s → X (u)))

I (X S Y)(t) ≡ ∃s < t (Y (s) ∧ ∀u (s < u < t → X (u)))

I Cn(X)(t) ≡ ∃x1 · · · ∃xn
(t < x1 < · · · < xn < t + 1 ∧ X (x1) ∧ · · · ∧ X (xn))

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)
Let TL be a temporal logic with finitely many modalities
definable in FO(<,+1). Then TL is strictly less expressive than
FO(<,+1).

I One free predicate variable P.

I Four simple formulas P(t), ¬P(t), True and False.

I ModelMk interprets P as N/k .

I InMk every formula ϕ(t) of FO(<,+1) is equivalent to a
simple formula.

Inexpressiveness

I TL-modality O(X1, . . . ,Xn) interpreted by
FO(<,+1)-formula ψ(X1, . . . ,Xn, t).

I Semantics of ψ inMk defined by truth table.

X1 · · · Xn ψ

P · · · True ¬P

I There exists k 6= ` such that any TL-formula is equivalent
to the same simple formula on bothMk andM`.

I But Cn distinguishesMk fromM` for some n.

Part II: One-Clock Automata

Mind the Gap

Timed automata language inclusion:L(B)
?

⊆ L(A)

• A hasno clocks: PSPACE-Complete [Aluret al. 90]

A hasone clock: Non-primitive recursive

• A hastwo clocks: Undecidable [Alur, Dill 94]

This result is somewhat surprising: in most computational structures,

deciding language inclusion normally uses:

L(B) ⊆ L(A) ⇐⇒ L(B) ∩ L(A) = ∅

However, one-clock timed automata cannot be complemented .. .

Mind the Gap

Timed automata language inclusion:L(B)
?

⊆ L(A)

• A hasno clocks: PSPACE-Complete [Aluret al. 90]

• A hasone clock: Decidable — in fact Non-Primitive Recursive

• A hastwo clocks: Undecidable [Alur, Dill 94]

This result is somewhat surprising: in most computational structures,

deciding language inclusion normally uses:

L(B) ⊆ L(A) ⇐⇒ L(B) ∩ L(A) = ∅

However, one-clock timed automata cannot be complemented .. .

Mind the Gap

Timed automata language inclusion:L(B)
?

⊆ L(A)

• A hasno clocks: PSPACE-Complete [Aluret al. 90]

• A hasone clock: Decidable — in fact Non-Primitive Recursive

• A hastwo clocks: Undecidable [Alur, Dill 94]

This result is somewhat surprising: in most computational structures,

deciding language inclusion normally uses:

L(B) ⊆ L(A) ⇐⇒ L(B) ∩ L(A) = ∅

However, one-clock timed automata cannot be complemented .. .

Some Applications

• Hardware and software systems are often described via high-level
functional specifications, describing their intended global behavior.

• Functional specifications are often given asfinite-state machines.
A proposed implementationIMP meets its specificationSPEC iff

L(IMP) ⊆ L(SPEC).

Finite-state machinesare often used asspecificationsof systems:

IMP meetsSPEC iff L(IMP) ⊆ L(SPEC)

• Our work enables us to handletimed functional specifications:
timed automata with a single clock.

• (Further potential applications to verification describedlater on.)

Sketch of the Algorithm

• Reduce the language inclusion questionL(B)
?

⊆ L(A) to a

reachability question on an infinite graphH.

Construct a compatiblewell-quasi-order 4 onH:

WheneverW 4 W ′: if W is safe, thenW ′ is safe.

Any infinite sequenceW1, W2, W3, . . . eventually saturates:

there existsi < j such thatWi 4 Wj .

ExploreH, looking for unsafe nodes. The search must eventually

terminate.

For simplicity, we focus onuniversality: L(A)
?
= TT

Sketch of the Algorithm

• Reduce the language inclusion questionL(B)
?

⊆ L(A) to a

reachability question on an infinite graphH.

• Construct a compatiblewell-quasi-order 4 onH:

– WheneverW 4 W ′: if W is safe, thenW ′ is safe.

– Any infinite sequenceW1, W2, W3, . . . eventually saturates:

there existsi < j such thatWi 4 Wj .

ExploreH, looking for unsafe nodes. The search must eventually

terminate.

For simplicity, we focus onuniversality: L(A)
?
= TT

Sketch of the Algorithm

• Reduce the language inclusion questionL(B)
?

⊆ L(A) to a

reachability question on an infinite graphH.

• Construct a compatiblewell-quasi-order 4 onH:

– WheneverW 4 W ′: if W is safe, thenW ′ is safe.

– Any infinite sequenceW1, W2, W3, . . . eventually saturates:

there existsi < j such thatWi 4 Wj .

• ExploreH, looking for unsafe nodes. The search must eventually

terminate.

For simplicity, we focus onuniversality: L(A)
?
= TT

Sketch of the Algorithm

• Reduce the language inclusion questionL(B)
?

⊆ L(A) to a

reachability question on an infinite graphH.

• Construct a compatiblewell-quasi-order 4 onH:

– WheneverW 4 W ′: if W is safe, thenW ′ is safe.

– Any infinite sequenceW1, W2, W3, . . . eventually saturates:

there existsi < j such thatWi 4 Wj .

• ExploreH, looking for unsafe nodes. The search must eventually

terminate.

• For simplicity, we focus onuniversality: L(A)
?
= TT

Higman’s Lemma

Let Λ = {a1, a2, . . . , an} be an alphabet.

Let 4 be thesubword order onΛ∗, the set of finite words overΛ.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order onΛ∗:

Any infinite sequence of wordsW1, W2, W3, . . . must eventually have

two wordsWi 4 Wj , with i < j.

G. Higman, “Ordering by divisibility in abstract algebras.”

Proceedings of the London Mathematical Society, vol. 2, 1952.

Higman’s Lemma

Let Λ = {a1, a2, . . . , an} be an alphabet.

Let 4 be thesubword order onΛ∗, the set of finite words overΛ.

Ex.: HIGMAN 4 HIGHMOUNTAIN

Then4 is awell-quasi-order onΛ∗:

Any infinite sequence of wordsW1, W2, W3, . . . must eventually have

two wordsWi 4 Wj , with i < j.

G. Higman, “Ordering by divisibility in abstract algebras.”

Proceedings of the London Mathematical Society, vol. 2, 1952.

Timed Automata Configurations

Let A be a timed automaton with a single clockx,

and discretelocationss0, s1, . . . ,sn.

• A stateof A is a pair(s, v):

– s is a location.

– v ∈ R
+ is the value of clockx.

• A configuration of A is a finite set of states.

x

s s0 1
x<3?
b

x>2? b

 := 0

1<

a

Timed Automata Configurations

Let A be a timed automaton with a single clockx,

and discretelocationss0, s1, . . . ,sn.

• A stateof A is a pair(s, v):

– s is a location.

– v ∈ R
+ is the value of clockx.

• A configuration of A is a finite set of states.

(s1, 1.4)

x

1<x<3?
b1s0s

x>2? b

a := 0

Timed Automata Configurations

Let A be a timed automaton with a single clockx,

and discretelocationss0, s1, . . . ,sn.

• A stateof A is a pair(s, v):

– s is a location.

– v ∈ R
+ is the value of clockx.

• A configuration of A is a finite set of states.

(s1, 4.5)

x

1<x
b1s

x>2? b

0s

a := 0

<3?

Timed Automata Configurations

Let A be a timed automaton with a single clockx,

and discretelocationss0, s1, . . . ,sn.

• A stateof A is a pair(s, v):

– s is a location.

– v ∈ R
+ is the value of clockx.

• A configuration of A is a finite set of states.

{(s0, 2), (s1, 1.4)}

x

1<x<3?
b1s0s

a := 0

x>2? b

Timed Automata Configurations

Every timed traceu gives rise to a configuration ofA.

Ex.: u = 〈0.5, a, 0.2, b, 0.4, c〉 leads to{(s5, 0.6), (s6, 0.4)}.

?>=<89:;s1
b

// ?>=<89:;s3
c

// ?>=<89:;s5
// . . .

// ?>=<89:;s0

a

x:=0

88rrrrrrrr

a

&&LLLLLLLL

?>=<89:;s2
b

x:=0

// ?>=<89:;s4
c

// ?>=<89:;s6
// . . .

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

• ∀a ∈ Σ, ∀t1 ∈ R
+, ∃t2 ∈ R

+ such that

if A[C1]
t1,a
−→ A[C′

1], thenA[C2]
t2,a
−→ A[C′

2], andC′

1 R C′

2.

• Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 ∼ C2,

if there exists some bisimulation relating them.

Theorem. If C1 ∼ C2, then

A[C1] is universal⇐⇒ A[C2] is universal.

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

• ∀a ∈ Σ, ∀t1 ∈ R
+, ∃t2 ∈ R

+ such that

if A[C1]
t1,a
−→ A[C′

1], thenA[C2]
t2,a
−→ A[C′

2], andC′

1 R C′

2.

• Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 ∼ C2,

if there exists some bisimulation relating them.

Theorem. If C1 ∼ C2, then

A[C1] is universal⇐⇒ A[C2] is universal.

Bisimilar Configurations

If C is a configuration, letA[C] beA ‘started’ in configurationC.

Definition. A relationR on configurations is abisimulation if,

wheneverC1 R C2, then

• ∀a ∈ Σ, ∀t1 ∈ R
+, ∃t2 ∈ R

+ such that

if A[C1]
t1,a
−→ A[C′

1], thenA[C2]
t2,a
−→ A[C′

2], andC′

1 R C′

2.

• Vice-versa.

We say thatC1 andC2 arebisimilar , writtenC1 ∼ C2,

if there exists some bisimulation relating them.

Theorem. If C1 ∼ C2, then

A[C1] is universal⇐⇒ A[C2] is universal.

Bisimilar Configurations: Examples

C1 = {(s0, 0.5)} ≁ C2 = {(s0, 1.3)}.

s0s0

s0

C1:
0.50.5

1.3
C2:

~

Bisimilar Configurations: Examples

C1 = {(s0, 0.5)} ≁ C2 = {(s0, 1.3)}.

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0
x>1? Σ

// ?>=<89:;76540123s1
ABCFED Σ

��

Bisimilar Configurations: Examples

C1 = {(s0, 0.5)} ≁ C2 = {(s0, 1.3)}.

s0s0

s0

C1:
0.50.5

1.3
C2:

~

A : // ?>=<89:;76540123s0
x>1? Σ

// ?>=<89:;76540123s1
ABCFED Σ

��

A[C2] is universal, butA[C1] rejects〈0, a〉.

Bisimilar Configurations: Examples

s0

s0

0.7

0.2

~

~0.7

0.2
s0

s0
1.4

1.8

~
s0

s0
1.4

1.8

Bisimilar Configurations: Examples

s0

s0

s0

s0

1.4

1.8

~

0.7

0.2

~

~0.7

0.2
s0

s0
1.4

1.8

Bisimilar Configurations: Examples

s0

s0

s0

s0

1.4

1.8

~

s0

s0

0.7

0.2

1.4

1.8

0.7

0.2

~

~

Bisimilar Configurations: Examples

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A[C2] is universal, butA[C1] rejects〈0.5, a〉.

Bisimilar Configurations: Examples

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0
x<1∨x>2? Σ

// ?>=<89:;76540123s1
ABCFED Σ

��

A[C2] is universal, butA[C1] rejects〈0.5, a〉.

Bisimilar Configurations: Examples

C2:

s0

s0
~

C1:
0.7

0.2

1.4

1.8

A : // ?>=<89:;76540123s0
x<1∨x>2? Σ

// ?>=<89:;76540123s1
ABCFED Σ

��

A[C2] is universal, butA[C1] rejects〈0.5, a〉.

Bisimilar Configurations: Examples

C’2:

s0

s0
~

C’1:
1.2

0.7

1.9

2.3

A : // ?>=<89:;76540123s0
x<1∨x>2? Σ

// ?>=<89:;76540123s1
ABCFED Σ

��

A[C2] is universal, butA[C1] rejects〈0.5, a〉.

Bisimilar Configurations: Examples

What about . . .

C2:

s0

s0

C1:
1.4

0.9

0.5

1.1

?

Theyare bisimilar: C1 ∼ C2.

Bisimilar Configurations: Examples

What about . . .

C2:

s0

s0

C1:
1.4

0.9

0.5

1.1

~

Theyare bisimilar: C1 ∼ C2.

Constructing a Decidable Bisimulation Relation

Let K ∈ N be the largest constant appearing in clock constraints ofA.

Theorem. Let C andC′ be configurations ofA.

If there exists a bijectionf : C → C′ that preserves

• locations: f(s, v) = (s′, v′) =⇒ s = s′,

• integer parts of clockx, up toK:

f(s, v) = (s′, v′) =⇒ ((⌈v⌉ = ⌈v′⌉ ∧ ⌊v⌋ = ⌊v′⌋) ∨ v, v′ > K),

• the ordering of the fractional parts of clockx:

f(si, vi) = (s′i, v
′

i) =⇒ (vi < vj ⇐⇒ v′i < v′j),

thenC ∼ C′.

Constructing a Decidable Bisimulation Relation

• Let K be the largest constant appearing in clock constraints ofA.

• Let REG =
{

{0}, (0, 1), {1}, (1, 2), . . . , {K}, (K,∞)
}

be the collection of ‘one-dimensional regions’ ofA.

• Let S = {s0, s1, . . . , sn} be the set of locations ofA.

• Let Λ = S × REG.

• Let C be a configuration ofA. For simplicity, assume all the

fractional parts of states inC are distinct.

• Note that each state inC has a unique matching letter inΛ.

• EncodeC as a wordH(C) ∈ Λ∗, ordered by increasing fractional

parts of states.

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

We encodeC asH(C) = b . . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = b . . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = b . . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bc. . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bca. . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bcad. . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bcada. . .

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bcadaa

Encoding Configurations as Words: Example

Consider the configurationC:

s0

s1
:C 0.4 1.2

0.3 1.5

0.7 0.9

ba

c d

We encodeC asH(C) = bcadaa.

From Bisimulation to Simulation

Theorem. If H(C) = H(C′), thenC ∼ C′.

Corollary. If H(C) = H(C′), then

A[C] is universal⇐⇒ A[C′] is universal.

Corollary. If H(C) 4 H(C′), then

A[C] is universal=⇒ A[C′] is universal.

From Bisimulation to Simulation

Theorem. If H(C) = H(C′), thenC ∼ C′.

Corollary. If H(C) = H(C′), then

A[C] is universal⇐⇒ A[C′] is universal.

Corollary. If H(C) 4 H(C′), then

A[C] is universal=⇒ A[C′] is universal.

From Bisimulation to Simulation

Theorem. If H(C) = H(C′), thenC ∼ C′.

Corollary. If H(C) = H(C′), then

A[C] is universal⇐⇒ A[C′] is universal.

Corollary. If H(C) 4 H(C′), then

A[C] is universal=⇒ A[C′] is universal.

The Algorithm: Recapitulation

• Reduce the universality questionL(A)
?
= TT to a reachability

question on an infinite graph of words.

• The subword order4 on this graph is a compatible well-quasi-order:

– WheneverH(C) 4 H(C′):

if A[C] is universal, thenA[C′] is universal.

– Any infinite sequenceH(C1), H(C2), H(C3), . . . eventually

saturates: there existsi < j such thatH(Ci) 4 H(Cj).

• Explore the graph, looking for a word/configuration from whichA

cannot perform some event. The search must eventually terminate.

Timed Automata Language Inclusion

Theorem. The language inclusion problemL(B)
?

⊆ L(A) is decidable,
providedA has at most one clock.

The complexity isnon-primitive recursive.

Non-primitive recursive complexity lower bound is established by

reduction from reachability problem for lossy channel systems.

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Algorithmic Complexity

..

.

NLOG−
SPACE

PSPACE

EXPTIME

2EXPTIME

NP

P

3EXPTIME

ELEMENTARY
FUNCTIONS

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

0 clocks: NLOGSPACE−Complete

1 clock: NLOGSPACE−Complete

2 clocks: NP−Hard

3+ clocks: PSPACE−Complete

0 clocks: PSPACE−Complete

1 clock: Non−Primitive Recursive

2+ clocks: Undecidable

Emptiness/
Reachability

Universality/
Language Inclusion

Summary

• A single clock is surprisingly powerful . . .

– can capture simple timed functional specifications

– can capture substantial fragments of MTL

. . . yet still lives in a decidable world.

• Punctuality notquite as noxious as previously thought:

– but it does take language inclusion from PSPACE to

Non-Primitive Recursive!

Two Clocks: Configuration G3

x
1

1

y

Two Clocks: Configuration G3

x
1

1

y

Two Clocks: Configuration G4

x
1

1

y

Two Clocks: Configuration G4

x
1

1

y

Two Clocks: Configuration G5

x
1

1

y

Two Clocks: Configuration G5

x
1

1

y

Part II: Future Work

• Efficient implementation:

– Symbolic algorithms — using better-quasi-orders?

– Good conservative abstractions.

– Counterexample-guided framework.

• Language inclusion when discounting the future and/or bounding

time.

• Connections with lossy and insertion channel systems:

– Logical characterization of the expressive power of one-clock

timed alternating automata.

Part IV: Time-Bounded Verification

James Worrell

Oxford University Computing Laboratory

MOVEP, July 2010

A Long Time Ago, circa 2003. . .

Use logic you must!

bounding time?
How about

I have foreseen it:
everything will remain

undecidable.

cannot be complemented!
Timed automata still

Time-Bounded Language Inclusion
TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.
I Universe’s lifetime is believed to be bounded anyway. . .

Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in ∃MTL [Henzinger, Raskin, Schobbens 1998]).

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem
I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]

Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T)→ 2MP

0 1 2 3 4 5
Q:

0 1 2 3 4 5
R:

0 1 2 3 4 5
P:

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem
For any fixed bounded time domain [0,T), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
language inclusion problem LT (A) ⊆ LT (B) is decidable and
2EXPSPACE-complete.

Time-Bounded Language Inclusion

I Let timed automata A, B, and time bound T be given.
I Define formula ϕacc

A (W,P) in MSO(<,+1) such that:

A accepts timed word w ⇐⇒ ϕacc
A (W,P) holds

where
I W encodes w
I P encodes a corresponding run of A.

I Define likewise ϕacc
B (W,Q) for timed automaton B.

I Then LT (A) ⊆ LT (B) iff:

∀W∀P (ϕacc
A (W,P)→ ∃Qϕacc

B (W,Q))

holds over time domain [0,T).
I This can be decided in 2EXPSPACE.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).

From MSO(<,+1) to MSO(<)

2

1

0

0 1

0 1

0 1

P:

P

P

P

0 1 2 3
:

:

:
Replace every:

I ∀x ψ(x) by ∀x (ψ(x) ∧ ψ(x + 1) ∧ ψ(x + 2))

I x + k1 < y + k2 by


x < y if k1 = k2
true if k1 < k2
false if k1 > k2

I P(x + k) by Pk (x)
I ∀P ψ by ∀P0 ∀P1 ∀P2 ψ

Then ϕ is satisfiable over [0,T) ⇐⇒ ϕ is satisfiable over [0,1).

The Time-Bounded Theory: Expressiveness

FO(<) LTL

MSO(<)

MSO(<,+1)

FO(<,+1) MTL

automata
timed

automata

The Time-Bounded Theory: Complexity

..

.

NLOGSPACE−complete
reachability

PSPACE−complete
LTL model checking

PSPACE−complete
language inclusion

MTL model checking
EXPSPACE−complete

reachability
PSPACE−complete

language inclusion
2EXPSPACE−complete

MSO(<,+1) model checking
NON−ELEMENTARY

MSO(<) model checking
NON−ELEMENTARY

FO(<) model checking
NON−ELEMENTARY

FO(<,+1) model checking
NON−ELEMENTARY

ELEMENTARY

(PRIMITIVE RECURSIVE)
NON−ELEMENTARY

SPACE
NLOG−

P

PSPACE

3EXPSPACE

EXPSPACE

NP

NON−PRIMITIVE RECURSIVE

UNDECIDABLE

2EXPSPACE

Classical Theory Time−Bounded Theory

Part IV: Conclusion

I For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

I Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Thank you for your attention!

