Tutorial on Timed Systems Verification

James Worrell

Oxford University Computing Laboratory

MoVeP, July 2010

The Classical Theory of Verification

Automata
\C
L%, RN

» Qualitative (order-theoretic), rather than quantitative (metric).
» Time is modelled as the naturals N = {0,1,2,3,...}.
» Note: focus on linear time (as opposed to branching time).

A Simple Example

‘P occurs infinitely often’

‘

Op

aoP
Vx3y (x <y AP(y))

Specification and Verification

Assume the system is modelled by an automaton M.
The specification can be given by:

» A Linear Temporal Logic (LTL) formula 6.

0:=P ’ 01 N 0> ’ 01V 0 ‘ -6 ‘ 01U 05 ‘ 01 S 0>
For example, O(REQ — OACK).

Verification is then model checking: M =6 ?

» A First-Order Logic (FO(<)) formula ¢.

pu=Xx<y | PX) | o1 A2 | p1Vga | mp | VXo | Ixp
For example, Vx (REQ(x) — Jy (x < y A ACK(Y))).
Verification is again model checking: M = ¢ ?

v

v

v

v

Another Example

‘P holds at every even position
(and may or may not hold at odd positions)’

It turns out it is impossible to capture this requirement

using LTL or FO(<).

LTL and FO(<) can however capture the specification:

‘Q holds precisely at even positions’.
Qno@—-O-Q)AO(-Q— OQ)

So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and 0O(Q — P)’.
Finally, need to existentially quantify Q out:

3Q (Q holds precisely at even positions and 00 (Q — P))

More Specification and Verification

Monadic Second-Order Logic (MSO(<)):

pu=x<y|PX) | e1Ap2 | o1V |~ | Vx| Ixp | VP | 3Py

Theorem (Buichi 1960)

Any MSO(<) formula ¢ can be effectively translated into an
equivalent automaton A,.

Corollary (Church 1960)

The model-checking problem for automata against MSO(<)
specifications is decidable:

ME o iff L(M)NL(A-,) =0

Algorithmic Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

@ \ON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY

.
3EXPSPACE
2EXPSPACE

EXPSPACE

PSPACE

» Most problems in Computer Science sit
within PSPACE.
» Hierarchy extends much beyond:

» EXPSPACE: 2°(n)
> 2EXPSPACE:22'U:)H)
» 3EXPSPACE: 22°

> ...
> ELEMENTARY: | J {kEXPSPACE}
keN

.n

» NON-ELEMENTARY: 22°
~——

» NON-PRIMITIVE RECUnRSIVIZE:

Ackerman: 3. 4, 8, 2048, 22 ..
—
2048

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;

Gabbay, Pnueli, Shelah, Stavi 1980)

LTL and FO(<) have precisely the same expressive power.
But amazingly:

Theorem (Sistla & Clarke 1982)

LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations. Moreover,

the language inclusion problem (L(A) C L(B) ?) is
PSPACE-complete.

The Classical Theory: Expressiveness

automata --

counter—free
automata

--------- MSO(<)

FO(<)

The Classical Theory: Complexity

UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY

FO(<) model checking
NON-ELEMENTARY

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

-/

ELEMENTARY
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete —
| EXPSPACE
| ||I= pspace
language inclusion =1 |
PSPACE-complete b0
P
NLOG-
" ility SRACE
NLOGSPACE-complete
|

A Login Protocol

login_name pw_correct
STfRT X=0 VALIDATE <607
restart

X2607

x>107 | restart x<607? | pw_wrong

Y

/
DELAY |«) 06 ERROR

SPECIFICATION: O(pw_wrong — Oy 10)—restart)

TAHCT40Z0

Radic Shack
273-13854

swo3

[T pin Tt

T

—

s 7 B x
MO camcTiea N Te pin
4

IS EXEXT: #######H

Minutes LEDs 159% Minutes LEDs
47K <

To pin & of last registar
Arcde of FEG LED

[...1 When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.

(-]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

TAHCT40Z0

Radic Shack
273-13854

swo3

[T pin Tt

T

—

s 7 B x
MO camcTiea N Te pin
4

IS EXEXT: #######H

Minutes LEDs 159% Minutes LEDs
47K <

To pin & of last registar
Arcde of FEG LED

[...1 When power is applied, a single ‘1’ bit is loaded into the first stage of both the
minutes and hours registers. To accomplish this, a momentary low reset signal is sent
to all the registers (at pin 9) and also a NAND gate to lock out any clock transitions at
pin 8 of the minutes registers. At the same time, a high level is applied to the data input
lines of both minutes and hours registers at pin 1. A single positive going clock pulse is
generated at the end of the reset signal which loads a high level into the first stage of
the minutes register. The rising edge of first stage output at pin 3 advances the hours
and a single bit is also loaded into the hours register. Power should remain off for 3
seconds before being re-applied to allow the filter and timing capacitors to discharge.

(-]

(Bill Bowden, www.circuitdb.com/circuits/id/98)

Timed Systems

Timed systems occur in:

Hardware circuits
Communication protocols
Cell phones

Plant controllers

Aircraft navigation systems

v

v

v

v

v

> ..

In many instances, it is crucial to accurately model the timed
behaviour of the system.

From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995

Timed Automata

login_name pw_correct
START X=0 VALIDATE <607
1 f restart

X=607?

x>107?| restart x<607? | pw_wrong

Y

/
DELAY |= P2 {1 0G_ERROR

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Words

» A fimed word is a finite or infinite sequence of timed events:

((fo, @), (1, @1), (t2, @2), (13, 83), - . .)

‘10 K 2 f | % I
6 h) i ‘2 f3 3
fo

Timed Automata

Timed automata are language acceptors for timed words

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

A g % x:=0 /\J x=17 Qz
LA): v — N
- S S -
L(A): e [

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:

0(Bjo,1)PEDAL — (5,10 BRAKE)

» Widely cited and used (over seven hundred papers
according to scholar.google.coml).

Unfortunately:

Theorem (Alur & Henzinger 1992)

MTL satisfiability and model checking are undecidable over Rx.
(Decidable but non-primitive recursive under certain semantic
restrictions [Ouaknine & Worrell 2005].)

Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.
For example, O(PEDAL — Q5 10) BRAKE) becomes

(PEDAL(x) — 3y (x + 5 < y < x + 10 A BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over Rx.

Corollary: FO(<,+1) and MSO(<,+1) satisfiability and model
checking are undecidable over R>g.

The Real-Time Theory: Expressiveness

MSO(<,+1)

timed
au’lfomata FO(E

MTL

Key Stumbling Blocks

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over Rx.

Part ll: Negative Results

Undecidability

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
Proof.

» Encode halting computations of two-counter machine M as
timed language L(M).

» Define timed automaton A accepting the complement of
L(M).

» Ais universal if and only if L(M) has no halting
computation.

Undecidability

Suppose that at time 3, the current tape contents of M is
(aabcab).

Undecidability

To correctly propagate the tape contents we require that every
event in the current time interval have a matching event one
time unit later.

bu x;é1?

A accepts all timed words that violate this property

Backward Propagation

This not sufficient: we have only enforced forward propagation
of events.

A @ x:io O y:io @xmiyd@

Observations

The undecidability proof required

» Dense Time
» Infinite Precision
» Two clocks

» Timed words of unbounded duration

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)

FO(<,+1) is strictly more expressive than any temporal logic
with finitely many modalities definable in FO(<,+1) over R.

Build your own temporal logic:
» (XU Y)H)=Ts>t(Y(s)AVu(t<u<s— X(u)))
» (XSY)t)y=3ds<t(Y(s)AVu(s<u<t— X(u)))

> Co(X)(t) =3xq1---3xp
(f<xg < - <Xp<t+TAX(X1)NA--- AN X(Xn))

Inexpressiveness

Theorem (Hirshfeld & Rabinovich 2007)

Let TL be a temporal logic with finitely many modalities

definable in FO(<,+1). Then TL is strictly less expressive than
FO(<,+1).

» One free predicate variable P.
» Four simple formulas P(t), —=P(t), True and False.
» Model M interprets P as N/k.

» In My every formula ¢(t) of FO(<,+1) is equivalent to a
simple formula.

v

v

v

v

Inexpressiveness

TL-modality O(Xj, ..., Xy) interpreted by
FO(<,+1)-formula (X, ..., Xy, t).

Semantics of ¢ in My defined by truth table.
Xi - Xp | ¥

P ... True|-P

There exists k # ¢ such that any TL-formula is equivalent
to the same simple formula on both My and M,.

But C, distinguishes M from M, for some n.

Part II: One-Clock Automata

‘Mind the Gap'

(?

Timed automata language inclusiab(B) C L(A)

e A hasno clocks: PSPACE-Complete [Alwet al. 90]

e A hastwo clocks: Undecidable [Alur, Dill 94]

‘Mind the Gap'

(?

Timed automata language inclusiab(B) C L(A)

e A hasno clocks: PSPACE-Complete [Alwet al. 90]
e A hasoneclock: Decidable — in fact Non-Primitive Recursive

e A hastwo clocks: Undecidable [Alur, Dill 94]

‘Mind the Gap'

(?

Timed automata language inclusiab(B) C L(A)

e A hasno clocks: PSPACE-Complete [Alwet al. 90]
e A hasoneclock: Decidable — in fact Non-Primitive Recursive

e A hastwo clocks: Undecidable [Alur, Dill 94]

This result is somewhat surprising: in most computatiotralcsures,
deciding language inclusion normally uses:

L(B) C L(A) <= L(B)NL(A) =0

However, one-clock timed automata cannot be complemented .

Some Applications'

e Hardware and software systems are often described vialeugh-
functional specifications describing their intended global behavior.

e Functional specifications are often givenfiagte-state machines
A proposed implementatioiMP meets its specificatioBPEC iff

L(IMP) C L(SPEC).
Finite-state machinesare often used aspecificationsof systems:

IMP meetsSPEC iff L(IMP) C L(SPEC)

e Our work enables us to handiened functional specifications:
timed automata with a single clock

e (Further potential applications to verification descrileer on.)

‘ Sketch of the Algorithm I

(?

e Reduce the language inclusion questigiB) C L(A) to a
reachability question on an infinite grapH.

‘ Sketch of the Algorithm I

(?

e Reduce the language inclusion questigiB) C L(A) to a
reachability question on an infinite grapH.

e Construct a compatibieell-quasi-order < onH:
— WhenevedV < W': if W is safe, thell’ is safe.

— Any infinite sequencl/, Wy, W3, ... eventually saturates:
there exists < j such thatV; < W;.

‘ Sketch of the Algorithm I

(?

e Reduce the language inclusion questigiB) C L(A) to a
reachability question on an infinite grapH.
e Construct a compatibleell-quasi-order < on'H:
— WhenevedV < W': if W is safe, thell’ is safe.
— Any infinite sequencl/, Wy, W3, ... eventually saturates:
there exists < j such thaiV;, < W,.

e EXxplore’H, looking for unsafe nodes. The search must eventually
terminate.

‘ Sketch of the Algorithm I

(?

Reduce the language inclusion questigiB) C L(A) to a
reachability question on an infinite grapH.

Construct a compatibleell-quasi-order < on'H:
— WhenevedV < W': if W is safe, thedV’ is safe.

— Any infinite sequencl/, Wy, W3, ... eventually saturates:
there exists < j such thatV; < W;.

Explore’H, looking for unsafe nodes. The search must eventually
terminate.

. ?
For simplicity, we focus ominiversality: L(A) =TT

Higman’s Lemma'

Let A = {ai,as,...,a,} be an alphabet.
Let < be thesubword order on A*, the set of finite words ovex.

Ex.: HHGMAN < HIGHMOUNTAIN

Then<x is awell-quasi-order on A*;

Any infinite sequence of wordd’;, W5, W3, ... must eventually have
two wordsW; < W;, with 7 < j.

G. Higman, “Ordering by divisibility in abstract algebras.
Proceedings of the London Mathematical Society, vol. 2, 1952.

Higman’s Lemma'

Let A = {ai,as,...,a,} be an alphabet.
Let < be thesubword order on A*, the set of finite words ovex.

Ex.: HHGMAN < HIGHMOUNTAIN

Then< is awell-quasi-order on A*;

Any infinite sequence of wordd’;, W5, W3, ... must eventually have
two wordsW; < W;, with 7 < j.

G. Higman, “Ordering by divisibility in abstract algebras.
Proceedings of the London Mathematical Society, vol. 2, 1952.

‘ Timed Automata Configurations'

Let A be a timed automaton with a single claegk
and discretdéocations sg, S1, ..., S,.

e A stateof A is a pair(s,v):
— sis alocation.

— v € R is the value of clock:.

e A configuration of A is a finite set of states.

x>27 b

@A—/ 1<x<3%
L b

‘ Timed Automata Configurations'

Let A be a timed automaton with a single clack
and discretdéocationssg, S1, ..., Sn.

e A stateof A is a pair(s,v):
— sis alocation.

— v € RT is the value of clock.

e A configuration of A is a finite set of states.

x>27 b

O o
\

‘ Timed Automata Configurations'

Let A be a timed automaton with a single clack
and discretdéocationssg, S1, ..., Sn.

e A stateof A is a pair(s,v):
— sis alocation.

— v € RT is the value of clock.

e A configuration of A is a finite set of states.

X>27 Db

O e
\

‘ Timed Automata Configurations'

Let A be a timed automaton with a single clack
and discretdéocationssg, S1, ..., Sn.

e A stateof A is a pair(s,v):
— sis alocation.

— v € RT is the value of clock.

e A configuration of A is a finite set of states.

x>27 b

{(s0,2), (s1,1.4)} @4’/ jy_]_\>1<)é<3r‘
a

x:=0

‘ Timed Automata Configurations'

Every timed trace: gives rise to a configuration of.

Ex.. u=(0.5,a,0.2,b,0.4,c) leads tof (ss, 0.6), (sg, 0.4)}.

@@ @
o
%\
Bt @@

‘ Bisimilar Configurations I

If C'is a configuration, le!\[C'] be A ‘started’ in configuratiorC.

Definition. A relation’R on configurations is aisimulation if,
wheneverC; R Cs, then

o Va € X,Vt; € RT, 3t, € RT such that
tl,a

if A[C1] 25 A[C!], thenA[C,] 2% A[CY], andC! R C.

e Vice-versa.

‘ Bisimilar Configurations I

If C'is a configuration, le!\[C'] be A ‘started’ in configuratiorC.

Definition. A relation’R on configurations is aisimulation if,
wheneverC; R Cs, then

o Va e X, Vt; € RT, 3t, € RT such that
if A{C4] g A[C1], thenA[C5)] 24 A[CY], andC] R C5.
e Vice-versa.
We say that”; andC; arebisimilar, writtenCy ~ (s,
If there exists some bisimulation relating them.

‘ Bisimilar Configurations I

If C'is a configuration, le!\[C'] be A ‘started’ in configuratiorC.

Definition. A relation’R on configurations is aisimulation if,
wheneverC; R Cs, then

o Va € X,Vt; € RT, 3t, € RT such that
if A[C1] 25 A[C!], thenA[C,] 2% A[CY], andC! R C.
e Vice-versa.

We say that”; andC; arebisimilar, writtenCy ~ (s,
If there exists some bisimulation relating them.

Theorem. If C; ~ C5, then

A[C] is universal <= A[C5] is universal

Bisimilar Configurations: Examples'

Bisimilar Configurations: Examples'

Bisimilar Configurations: Examples'

A % x>1?z>i>2

A[C5] is universal, butd [] rejects(0, a).

Bisimilar Configurations: Examples'

Bisimilar Configurations: Examples'

2 | o7 AR
0 | NG | o
N 14
S————}+— o —|-------

o
1.8

Bisimilar Configurations: Examples'

| o | SR
0.7
o | SR
0.2
.
1.4
.
1.8
- o—— |-
0.7 1.4

\d
0.2 1.8

Bisimilar Configurations: Examples'

0.7

1.4

0.2

s
1.8

Bisimilar Configurations: Examples'

1.4

s
1.8

r<1Ve>27 X
@)

Bisimilar Configurations: Examples'

0.7

1.4

0.2

A :

A[C5] is universal, butd[C] rejects(0.5, a).

r<1Ve>27 X
—

s
1.8

/4

\32

Bisimilar Configurations: Examples'

1.2 1.9

0.7 2.3 |

r<1Ve>27 X
a4 —® SOBL

A[C5] is universal, butd[C] rejects(0.5, a).

Bisimilar Configurations: Examples'

What about ...
e Y. | e
Cr 9 — | I

Bisimilar Configurations: Examples'

What about ...
e Y. | o
Cr 9 O——0 | I

Theyare bisimilar: C; ~ (5.

Constructing a Decidable Bisimulation Relation'

Let K € N be the largest constant appearing in clock constraints. of

Theorem. Let C' andC’ be configurations o#.
If there exists a bijectiorf : C — C’ that preserves

e locations: f(s,v) = (s',v") = s=¢,

e Integer parts of clock;, up to K:
f(s,0) = (s, 0") = ((Jv] =[v'] A o] =[V"]) V 0,0 > K),

e the ordering of the fractional parts of clogk
f(si,vi) = (s3,0;) = (v <v; = v <)),

thenC ~ C".

Constructing a Decidable Bisimulation Relation'

Let K be the largest constant appearing in clock constraints. of

Let REG = {{0}, (0,1),{1},(1,2),.... {K}, (K, oo)}
be the collection of ‘one-dimensional regions’ 4f

LetS = {sg, s1,-..,s,} be the set of locations of.
LetA =5 x REG.

Let C' be a configuration ofi. For simplicity, assume all the
fractional parts of states i are distinct.

Note that each state @ has a unique matching letter .in

EncodeC' as a wordH (C') € A*, ordered by increasing fractional
parts of states.

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

S o

o oo
04 0.70.9

0.

3

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

a b
T~ T
Sy o *—eo — |-
C 04 0709 12
R 15

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

o)
/\
B! o—————————F-
. 1.2
S_I.

We encode” asH(C') =Db...

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

%
c:
03 15
\/
C

We encode” asH(C') = bc. ..

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

a
/\
B! o —o—ot—o—————————Ff-o
C: 0.4
S .

We encode&” asH(C') = bca. ..

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

%
c:
15
\/
d

We encode” asH(C') = bcad. . .

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

a
/\
B! oo f—o—
C: 0.7
S R B

We encode” asH(C') = bcada . .

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

a
/\
B! & f—o— -
. 0.9
S5 b4 .

We encode&’’ as H(C') = bcadaa

‘ Encoding Configurations as Words: Examplﬂ

Consider the configuratiofi':

a b
/\ /\
c N 04 0709 12 7
R 15
\/ \/
C d

We encode&” as H(C') = bcadaa.

From Bisimulation to Simulation '

Theorem. If H(C) = H(C"), thenC ~ C".

From Bisimulation to Simulation '

Theorem. If H(C) = H(C"), thenC ~ C".

Corollary. If H(C) = H(C"), then

A[C]is universal<= A|C"] is universal

From Bisimulation to Simulation '

Theorem. If H(C) = H(C"), thenC ~ C".

Corollary. If H(C) = H(C"), then

A[C]is universal<= A|C"] is universal

Corollary. If H(C) < H(C"), then

A[C] is universal = A|[C"] is universal

‘The Algorithm: Recapitulation I

e Reduce the universality questidni A) ~TTtoa reachability
guestion on an infinite graph of words.

e The subword ordex on this graph is a compatible well-quasi-order:
— WheneverH (C) < H(C"):
If A[C'] is universal, themd[C’] is universal.
— Any infinite sequencéf (C4), H(Cs), H(C3), ...eventually
saturates: there exists< j such that (C;) < H(C}).

e EXxplore the graph, looking for a word/configuration from wahnid
cannot perform some event. The search must eventuallyriateni

Timed Automata Language IncIusionI

t?

Theorem. The language inclusion problei(B) C L(A) is decidable
providedA has at most one clock.
The complexity isnon-primitive recursive.

Non-primitive recursive complexity lower bound is estabkd by
reduction from reachability problem for lossy channel syss.

Algorithmic Complexity

Emptiness/ UNDECIDABLE Universality/

Reachability g N Language Inclusion
NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

Y
NP

P

NLOG-
SPACE

Emptiness/
Reachability

Algorithmic Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

0 clocks: NLOGSPACE-Complete

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

Y
NP

P

Universality/
Language Inclusion

Emptiness/
Reachability

Algorithmic Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

0 clocks: NLOGSPACE-Complete

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP

Universality/
Language Inclusion

0 clocks: PSPACE-Complete

Emptiness/
Reachability

Algorithmic Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

1 clock: NLOGSPACE-Complete

0 clocks: NLOGSPACE-Complete

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP
P

Universality/
Language Inclusion

0 clocks: PSPACE-Complete

Emptiness/
Reachability

Algorithmic Complexity

UNDECIDABLE

1 clock: NLOGSPACE-Complete

0 clocks: NLOGSPACE-Complete

N
NON-PRIMITIVE RECURSIVE

e N\
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP
P

Universality/
Language Inclusion

1 clock: Non—Primitive Recursive

0 clocks: PSPACE-Complete

Emptiness/
Reachability

2 clocks: NP-Hard

Algorithmic Complexity

UNDECIDABLE

1 clock: NLOGSPACE-Complete

0 clocks: NLOGSPACE-Complete

N
NON-PRIMITIVE RECURSIVE

e N\
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP
P

Universality/
Language Inclusion

1 clock: Non—Primitive Recursive

0 clocks: PSPACE-Complete

Emptiness/
Reachability

2 clocks: NP-Hard

Algorithmic Complexity

UNDECIDABLE

1 clock: NLOGSPACE-Complete

0 clocks: NLOGSPACE-Complete

N
NON-PRIMITIVE RECURSIVE

e N\
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP
P

Universality/
Language Inclusion

2+ clocks: Undecidable

1 clock: Non—Primitive Recursive

0 clocks: PSPACE-Complete

Emptiness/
Reachability

3+ clocks: PSPACE-Complete

2 clocks: NP-Hard

Algorithmic Complexity

UNDECIDABLE

1 clock: NLOGSPACE-Complete

0 clocks: NLOGSPACE-Complete

N
NON-PRIMITIVE RECURSIVE

e N\
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

ELEMENTARY
FUNCTIONS

3EXPTIME

2EXPTIME
EXPTIME

PSPACE

NP
P

Universality/
Language Inclusion

2+ clocks: Undecidable

1 clock: Non—Primitive Recursive

0 clocks: PSPACE-Complete

‘Summary'

e A single clock is surprisingly powerful ...
— can capture simple timed functional specifications
— can capture substantial fragments of MTL

... yet still lives in a decidable world.

e Punctuality noguite as noxious as previously thought:

— but it does take language inclusion from PSPACE to
Non-Primitive Recursive!

‘Two Clocks: Configuration G5 I

y

1__

‘Two Clocks: Configuration G5 I

y

1__

‘Two Clocks: Configuration G4 I

y

1__

‘Two Clocks: Configuration G4 I

y

1__

‘Two Clocks: Configuration G5 I

y

1__

‘Two Clocks: Configuration G5 I

y

1__

Part Il: Future Work '

e Efficient implementation:
— Symbolic algorithms — using better-quasi-orders?
— Good conservative abstractions.
— Counterexample-guided framework.
e Language inclusion when discounting the future and/or doun
time.
e Connections with lossy and insertion channel systems:

— Logical characterization of the expressive power of oreEicl
timed alternating automata.

Part IV: Time-Bounded Verification

James Worrell

Oxford University Computing Laboratory

MOVEP, July 2010

A Long Time Ago, circa 2003...

How about Timed automata still
bounding time? cannot be complemented!

Use logic you must!

I have foreseen it:
everything will remain
undecidable.

Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N

Question: Is Lv(A) C L1(B) ?

» Inspired by Bounded Model Checking.

» Timed systems often have time bounds (e.g. timeouts),
even if total number of actions is potentially unbounded.

» Universe’s lifetime is believed to be bounded anyway. . .

Timed Automata and Metric Logics

» Unfortunately, timed automata cannot be complemented
even over bounded time. ..
» Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
(in fact, even in IMTL [Henzinger, Raskin, Schobbens 1998])).
» This reverses Vardi’'s ‘automata-theoretic approach to
verification’ paradigm!

Monadic Second-Order Logic

More problems:

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,
Theorem

» MSO(<) is decidable over N [Btichi 1960]
» MSO(<) is decidable over Q, via [Rabin 1969]

Finite Variability

Timed behaviours are modelled as flows (or signals):

b I_IIHI_

0
f:[0,T)— 2MP Q: —| 1 |_| | |
0 1
A JlDﬂJlDﬂJl
0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q- I

5
Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem

For any fixed bounded time domain [0, T), the satisfiability and
model-checking problems for MSO(<,+1), FO(<,+1), and MTL
are all decidable, with the following complexities:

MSO(<,+1) NON-ELEMENTARY
FO(<,+1) NON-ELEMENTARY
MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0, T).

Theorem

Given timed automata A, B, and time bound T € N, the
language inclusion problem L1 (A) C Lt(B) is decidable and
2EXPSPACE-complete.

v

v

v

v

v

Time-Bounded Language Inclusion

Let timed automata A, B, and time bound T be given.
Define formula ¢5°°(W, P) in MSO(<,+1) such that:

A accepts timed word w <= ¢5°°(W, P) holds

where

» W encodes w
» P encodes a corresponding run of A.

Define likewise ©%°(W, Q) for timed automaton B.
Then Lr(A) C Ly(B) iff:

YW VP (o3°(W,P) — 3QoF°(W. Q))

holds over time domain [0, T).
This can be decided in 2EXPSPACE.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

» Let p be an MSO(<,+1) formulaand let T € N.
» Construct an MSO(<) formula i such that:

¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1)

» Conclude by invoking decidability of MSO(<).

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

P: —d s ””r P:

0 1

b AL

0 1

Replace every:
» Vx(x) by Vx (¥(x) Av(x+1)Av(x+2))
X<y if k1 = k2
» X+ ki<y+ko by true ifk <k
false ifky > ko

» P(x+ k) by Px(x)
> VPlp by VP()VP1 VPglb

Then ¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1).

The Time-Bounded Theory: Expressiveness

timed
automata

automata

MSO(<,+1)

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory
UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE MSO(<,+1) model checking

NON-ELEMENTARY T NON-ELEMENTARY
NON-ELEMENTARY

- (PRIMITIVE RECURSIVE) _

FO(<) model checking FO(<,+1) model checking

NON-ELEMENTARY NON-ELEMENTARY
[
ELEMENTARY

language inclusion
3EXPSPACE || 2EXPSPACE-complete
L—
LTL model checking 2EXPSPACE —|
PSPACE-complete CYDPARE MTL model checking
EXPSPACE-complete

EXPSPACE
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

Part IV: Conclusion

» For specifying and verifying real-time systems, the
time-bounded theory is much better behaved than the
real-time theory.

» Original motivation for this work was the time-bounded
language inclusion problem for timed automata.
We used logic as a tool to solve this problem.

Thank you for your attention!

